
The Ethical Compiler: Addressing the Is-Ought Gap in
Compilation (Invited Talk)

William J. Bowman
University of British Columbia

Vancouver, Canada
wjb@williamjbowman.com

Abstract
The is-ought gap is a problem in moral philosophy observing
that ethical judgments (“ought”) cannot be grounded purely
in truth judgments (“is”): that an ought cannot be derived
from an is. This gap renders the following argument invalid:
“It is true that type safe languages prevent bugs and that
bugs cause harm, therefore you ought to write in type safe
languages”. To validate ethical claims, we must bridge the
gap between is and ought with some ethical axiom, such as
“I believe one ought not cause harm”.

But what do ethics have to do with manipulating pro-
grams? A lot! Ethics are central to correctness! For example,
suppose an algorithm infers the type of 𝑒 is Bool, and 𝑒

is in fact a Bool; the program type checks. Is the program
correct—does it behave as it ought? We cannot answer this
without some ethical axioms: what does the programmer
believe ought to be?
I believe one ought to design and implement languages

ethically. Wemust give the programmer the ability to express
their ethics—their values and beliefs about a program—in
addition to mere computational content, and build tools that
respect the distinction between is and ought. This paper
is a guide to ethical language design and implementation
possibilities.

CCS Concepts: • Theory of computation → Program
specifications; Type structures; • Software and its engi-
neering→ General programming languages; Compil-
ers; Formal software verification; Software performance.

Keywords: Types, Compilers, Optimization, Security, Cor-
rectness, Ethics

ACM Reference Format:
William J. Bowman. 2025. The Ethical Compiler: Addressing the
Is-Ought Gap in Compilation (Invited Talk). In Proceedings of the
2025 ACM SIGPLAN International Workshop on Partial Evaluation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PEPM ’25, January 21, 2025, Denver, CO, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1350-7/25/01
https://doi.org/10.1145/3704253.3706135

and Program Manipulation (PEPM ’25), January 21, 2025, Denver, CO,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3704253.3706135

1 Introduction
Compilers should be correct [36]. But what is compiler cor-
rectness? What should compiler correctness mean?
Compiler correctness is one of the oldest questions in

programming languages research [25], and what it means
is still widely debated today [29]. Consider the following
example definition: for all programs 𝑒 , if 𝑒 runs to the value 𝑣
in an interpreter, then 𝑒 runs to 𝑣 after compilation. This is a
formalization of a commonly used compiler correctness the-
orem whole-program correctness. A compiler may satisfy this
specification, but if it does, should it be considered correct?

Our thesis is that this question is fundamentally impossi-
ble to answer.

“Should”—or “ought” to distinguish the technical from the
colloquial use—is an ethical judgement. “Ought” is a judge-
ment about what is subjectively true in the world: what one
(a subject) values, believes, intends, considers to be moral;
and what follows by logical deduction from those values,
beliefs, intentions, and morals. By contrast, “is” expresses a
truth judgement, a judgement about what is objectively true
in the world: what is true about objects in the world, and
what follows by logical deduction from those truths.

A question about what ought to be cannot be reduced to
a question about what is [19]. This problem is called the
is-ought gap in moral philosophy, and versions of it show
up in many disciplines. There are many good arguments
for why whole-program correctness is insufficient to cap-
ture the correctness of a compiler for realistic software, but
that does not tell us whether it ought to be the definition
of correctness. And, by the is-ought gap, arguments about
why one definition of correctness is insufficient cannot tell
us what the definition ought to be. We require some ethical
axioms to bridge the gap. For example, if the developer only
values monolithic whole programs without modularity, does
not value separate compilation, and does not value secu-
rity, then perhaps the compiler ought to be correct if it is
whole-program correct. On the other hand, if the developer is
writing cryptographically secure code, and believes the pro-
gram ought to satisfy constant timeness, then the compiler

https://orcid.org/0000-0002-6402-4840
https://doi.org/10.1145/3704253.3706135
https://doi.org/10.1145/3704253.3706135
https://doi.org/10.1145/3704253.3706135


PEPM ’25, January 21, 2025, Denver, CO, USA William J. Bowman

ought not be correct unless it preserves constant-timeness.
Such ethical axioms must come from the programmer.
Much work in compilation ignores the is-ought gap, and

we suffer as a result. In the best case, we argue about the mer-
its of different compiler correctness theorems, from whole-
program correctness to fully abstract compilation, which
preserves and reflects all possible observational equivalences
through compilation [29]. Frequently, we observe that “cor-
rectness” and “security” are different kinds of specifications [10,
13, 21]. In the worst case, we blame the programmer, telling
them to just memorize what the compiler does [4].
This is not only about the compiler per se, but many as-

pects of programming language design and implementation,
and how they interact with a programmer. Consider a type
system, a common place for programmers to express spec-
ifications and beliefs about their program. What ought an
expression’s type be? When ought a program be considered
well typed? Or consider an intermediate language, designed
to guarantee safety but also admit optimizations. What pro-
grams ought to be equal? What dynamic checks ought to
occur, and when? These question can only be answered by
the programmer. Unfortunately, it is often impossible for the
programmer to express their beliefs. Worse yet, much work
is spent trying to infer their beliefs from what is true in the
program.
Our original question, “what ought compiler correctness

be?”, is similarly flawed. It can only reduce correctness of
the compiler to truths about the original program, but that
cannot tell us what the compiled output ought to do. “Ought”
cannot follow from “is”! There is no answer to what compiler
correctness ought to mean independent of the program being
compiled, and what the programmer believes and values in
that program.

To address this gap, we must zoom out; cease the narrow
focus on what is technically correct, stop thinking in purely
pragmatic terms, and think instead about what ought to be:
about ethics.

Dictum 1. Compilers should be ethical, rather than correct.

I believe compilers should, ought, be ethical, rather than
correct. I present this and other dictums as meta-ethical ax-
ioms about language design and implementation. The ethical
compiler preserves intent rather than truth1: what ought to be
true of a program ought to be true of the compiled program.
Designing and implementing an ethical compiler requires
careful attention to distinctions often ignored in merely cor-
rect compilers. To have an ethical compiler, developers must
be able to express their intent, and language implementa-
tions must be able to use and distinguish intent from the
truths of the computation expressed in the program. So how
do we design and implement ethical compilers?

1We use “intent” as the noun for an ethical judgement, and “truth” as the
noun for a truth judgement.

2 Expressing Truth and Intent
We have two judgements: the subjective “ought” judgement,
and the objective “is” judgement. In the context of ethical
compilation, the object is a program and the subject is the
programmer. The program is an expression of some compu-
tation, and certain truths hold of it. The programmer also
has intents for that program, which may or may not be ex-
pressed.

It is common to focus on understanding truths about com-
putations. Introductions to many languages and language
implementations focus on how expressions evaluate, what
optimizations will apply and when, or when some property
will be true about a given program.

A key problem is in ethical compilation is expressing in-
tent—what ought to be true. Many languages and tools re-
strict our ability to express intent. Such restrictions are often
in the name of some guarantee or trade-off, such as safety,
security, performance, or usability. Some such restrictions
are mere accidents or historical artifacts; as a system or con-
text changes, so too might our beliefs, values, and intents.
There are practical and philosophical problems with these
restrictions, though.
Philosophically, these restrictions enforce moral univer-

salism: that a single system of ethics applies universally to
everyone. They force the programmer to subscribe to the
ethical framework of the compiler writer. Many program-
mers realize this and rebel, writing philosophical treatises
on the morality and politics of their compilers:

“Undefined behavior consists of exactly one propo-
sition, to wit: There must be compiler developers
whom the language standard protects but does
not bind, alongside developers whom the lan-
guage standard binds but does not protect.” [16]
“There is no ethical compilation under late capi-
talism.” [17]
“People need to drop the ‘I know [what] the com-
piler does’-model and start using the ‘The com-
piler is an evil djinn, secretly trying to corrupt
your wishes with the moral compass of tobacco
industry lawyers’-model of C semantics.” [4]

If we subscribe to moral relativism, the meta-ethical belief
that there is no one true system of ethics, then we must
give the programmer the ability to express intent about their
computation. Moreover, we must constantly improve our lan-
guages’ systems of ethical expression to express new intents
as they are discovered.

Dictum 2. The programmer should be able to say whether
something that is ought to be.

Practically, any compiler that restricts the programmer’s
ability to express intent will create programs that do not
behave as they ought, i.e., unethical programs.



The Ethical Compiler: Addressing the Is-Ought Gap in Compilation (Invited Talk) PEPM ’25, January 21, 2025, Denver, CO, USA

One of my favourite studies of unethical programs is the
work of D’Silva et al. [13]. D’Silva et al. [13] name and dis-
cuss the so called “correctness-security gap”, studying how
compiler optimizations, even when “correct”, can violate
security properties. A simple example is a program that ex-
plicitly overwrites memory containing a password, but this
overwrite is removed by dead store elimination. Overwriting
ought to be preserved for security, but the programmer can-
not express this. Another example is a cryptographic routine
designed to be constant time, but common sub-expression
elimination changes the timing of one branch. The timing
behaviour ought to be preserved, but the programmer cannot
express this. Both are ethical problems with the compiler;
the resulting programs are unethical.
D’Silva et al. [13] propose adding keywords to C that

would enable the programmer to express their intent. For
example, the keyword secure would express that writes
to memory that are never read are observable and should
be preserved, and lockstep would indicate that timing is
critical.
This is a great proposal, but it’s incomplete. Bizarrely,

despite being unethical, both optimizations are completely,
formally, correct. So how does one reconcile the apparently
correct behaviour of the programs with their obvious im-
morality?
The authors observe that the correctness-security gap

arises from the C semantics—that is, from truths about C. For
example, it states “GCC 3.2 only attempts to preserve the
semantics of C ... [but] time and power consumption are often
not specified by the language standard”. They also observe
this is a common problem in formal approaches to compiler
correctness, stating “semantics accounts for the state of a
program but not the state of the underlying machine”. In C’s
semantics, it is true that any two writes to a memory cell are
equivalent if that memory cell is never read. Unfortunately,
the programmer believes it ought not be true—C’s semantics
is unethical.

It’s not enough to express intent if what ought to be true
can never be true.

Dictum 3. Anything that ought to be should be possible.

So the authors propose a second piece to the solution:
ensure that the semantics of programs more closely model
that state of the underlying machine. They work through an
example of such a semantics and use it to show that dead
store elimination does not preserve semantics.
Neither solution is enough on its own. Changing the se-

mantics solves the ethical problem with the semantics—the
semantics is now ethical, since it is now possible for what
ought to be true to be in fact true. But we’re left with the
is-ought gap: given an arbitrary piece of C code with a dead
store, ought the dead store be eliminated? The compiler can-
not automatically decide this based on only the computation
content of a C program. It requires an ethical axiom from the

etc.
Types

Pragmas
Logic

Ought

Reconciliation

Inference
Semantics

Analyses
etc.Is

Figure 1. The Ethical Compilation Design Space

programmer: that this memory cell really ought to be over-
written, so the apparently dead store ought not be eliminated.
The keywords are introduced for this purpose, to communi-
cate this intent to the compiler, bridging the is-ought gap.

We can visualize the space of ethical compilation research
as in Figure 1. The first fix, adding keywords, exists in the
“Ought” space. The second fix, modifying the semantics, ex-
ists in the “Is” space. Both are necessary.
This is a great example, but adding keywords every time

we need to express new intents is a little unsystematic for
my taste.
My favourite approach to expressing intent is through

type systems. Being positioned inside the language along-
side the computation they describe, types often provide a
local, compositional, lightweight place to hang expressions
of intent. They can be extensible, enabling programmers and
compiler developers to add new types to capture new intents.
However, simple type systems are often too limited to

express intent in many domains. For example, while C’s
type system can express intent about how much memory
a value will occupy, it cannot express the type of an array
whose bounds ought to be statically known and, therefore,
safe to access without dynamic bounds checks. Further, type
systems often come with a guarantee—type safety—and as
mentioned earlier, guarantees tend to restrict expressivity.
For example,WebAssembly (Wasm) has a simple type system,
but requires several dynamic checks to guarantee type and
memory safety [18]. There is no way for the programmer to
express that dynamic checks ought not be necessary.
Much work on type systems is about enabling more ex-

pressions of intent and addressing the is-ought gap. Consider
the following example from my own work.

In Geller et al. [15], we study the aforementioned problem
with Wasm: there is no way to express that a computation
ought not require dynamic checks. In that work, we argue



PEPM ’25, January 21, 2025, Denver, CO, USA William J. Bowman

from pragmatics: while Wasm is designed to allow imple-
mentations to mitigate these costs, in practice, they still add
overhead [20], and in some contexts, those mitigations strate-
gies cannot work. However, really, the work is fundamentally
about ethical compilation: I ought to be able to express that
dynamic checks are not necessary, particularly in a low-level
language. This is impossible as Wasm violates Dictum 2 and
Dictum 3—I cannot express that dynamic checks ought not
be necessary, and the semantics requires dynamic checks to
ensure safety.

Our work introduces Wasm-Prechk, which addresses both
dictums. Past work designs type systems for low-level lan-
guages that enable expressing static bounds that can be used
to eliminate array bound checks [35, 37]. We design such a
type system for Wasm, extend it to all the dynamic checks
in Wasm, and prove type safety. This work firmly falls into
the “Ought” space of Figure 1, addressing Dictum 2: Wasm-
Prechk enables the programmer to express dynamic checks
ought not be necessary to ensure safety.

However, as we saw in our earlier example, it is not enough
to express what ought to be if what ought to be is not pos-
sible. In Wasm, there is no way for an instruction to access
memory without a dynamic bounds check; the semantics say
no such thing is possible. So Wasm-Prechk introduces new
instructions, a “pre-checked” counterpart to each instruction
that requires a dynamic check. The pre-checked instructions
require a stronger static check, to guarantee safety, but their
semantics do not perform a dynamic check. This work falls
into the “Is” space of Figure 1, addressing Dictum 3: Wasm-
Prechk makes it possible for instructions that, in truth, do
not perform dynamic checks.

Both pieces of work are necessary for an ethical compiler.
With only the modified semantics, it’s possible for a compiler
to remove the dynamic checks. In fact, some Wasm imple-
mentations probably do this internally, using some static
analysis to determine that a dynamic check is unnecessary,
and never exposing those semantics to the programmer for
safety. But that is not enough to be ethical: the programmer
cannot express that the dynamic check ought to be unnec-
essary. Wasm-Prechk enables the programmer to express
ought, and the language semantics to express is.

3 Preserving Intent
An ethical compiler requires additional expressivity for both
truth and intent about computations, but it requires more
than that. We’ve seen that a compiler may be technically
correct but unethical, as it preserves the unintended truth of
a computation. In our earlier examples, this resulted from
unexpressed intent. When the intent is expressed, a merely
correct compiler may still be unethical if it ignores what
ought to be, and generates some code that does something
else. To be ethical, the compiler must preserve intent.

Dictum 4. What ought to have been, still ought to be.

As types are my favourite way to express intent, type
preservation is my favourite way to formalize ethical compi-
lation.

Type preservation originated in some pragmatic concerns.
Proof-carrying code was an exciting idea to pair a distributed
program component with a specification and a certification
of correctness [28]. This would completely eliminate trust
in the program and the proof, reducing trust only to the
specification (intent) and the proof checker—great for secu-
rity! Unfortunately, certificates could be quite large. Type
preservation presented a possible solution. By using typed
intermediate languages, syntax could be reused as part of
the proof of correctness for the specification in the type, a la
the Curry-Howard correspondence. This could, in principle,
reduce the size of certificates, and even give a clear way to
generate and preserve some proofs through compilation [27].
That is still essentially the motivation found in the liter-

ature, but I prefer the philosophical argument: when types
express intent, type preservation expresses ethical compila-
tion. I don’t need to argue that this is good; it is ethical by
definition.

By systematically expressing intent in types, type preser-
vation gives a systematic way of developing an ethical com-
piler. For each program transformation, an intermediate lan-
guage must be designed as in Section 2 in which the required
intent is expressible but for a new, transformed program. This
could be a single typed intermediate language admitting var-
ious typed equivalences, or a series of typed intermediate
languages each with different semantics but type systems
capable of expressing the original intent. Then an ethical pro-
gram transformation transforms types and syntax together,
building a new well typed term.
Consider one recent and relatively simple example from

my own work.
Some languages, such as dependently typed languages, or

the simply typed 𝜆-calculus (STLC) without other features,
are terminating—all functions are intended to terminate.
However, if we compile the language, performing closure
conversion to compile first-order functions into second-class
closed procedures and explicitly allocating data in memory
(as any compiler targeting a realistic machine will do), the
language becomes non-terminating. This is true even if the
compiler is proven correct with respect to whole-program or
separate compilation. The new truth can be observed when
linking against handwritten target language components,
which could cause unexpected non-termination, or when
trying to statically analyze target language code, which can
no longer be guaranteed to terminate. Suddenly, with access
to explicit memory, functions can express recursion through
the heap—we get unintended non-termination. How can we
preserve the intended termination behaviour of all functions
in the language?

We show that a simple type system that stratifies the kind
of each heap allocated data type can preserve the intended



The Ethical Compiler: Addressing the Is-Ought Gap in Compilation (Invited Talk) PEPM ’25, January 21, 2025, Denver, CO, USA

termination behaviour [22, 23]. This work uses stratified
kinds based on predicative universe hierarchies from type
theory [24], but adapts them to reason about regions of the
heap that a heap-allocated type quantifies over, rather than
the universe of propositions a proposition quantifies over.
The idea is that in a pure functional language, when a func-
tion is created (allocated), it necessarily can only refer to data
allocated in previous regions. By capturing this stratification
of the heap after compilation, we make explicit in the type
that a heap allocated structure (like a reference or a closure)
can only refer to previous regions, as was the case in the
source language. We can express the intent that there are no
cycles in the heap that give rise to non-termination. Preserv-
ing typing into this language ensure the intended pattern
of allocation and reference is preserved, and the intended
termination behaviour of the language is preserved.
By first designing a typed intermediate language to ex-

press the desired intent (in this case, acyclicity in the heap),
then proving type preservation, we have a recipe to design
a compiler transformation that preserves that intent, i.e., an
ethical compiler.
While systematic, it’s often not easy to preserve types.

To express more intents requires richer type systems, and
preserving that intent requires preserving types into low-
level languages. Unfortunately, these requirements cause two
major problems in type preservation. First, as type systems
become more complex, they rely more and more on the
syntax of programs, making the type system more sensitive
to program transformations. Second, as programs become
more low level, type systems can rely less on structure and
expressions and instead must track state changes through
low-level instructions.
While these are difficult, I find these problems easier to

address when viewed through the lens of ethics, which helps
me dispel invalid latent assumptions. Consider the following
example difficulty from the literature on type preservation.
Dependent types are incredibly expressive, and very at-

tractive for ethical compilation. With a type system sufficient
to be a foundation of mathematics, surely I could express
anything that ought to be true about my program. Then, by
preserving that intent, I would have themost ethical compiler.

Unfortunately, this appeared to be impossible. A standard
model compiler starts with a CPS transformation, making
explicit the control flow of the program in the syntax [27].
Barthe and Uustalu [5] demonstrated that a CPS transforma-
tion of dependent types could not be type preserving to a
sound dependent type system. After CPS translation, with
continuations made explicit, a continuation could be invoked
twice with different values, causing an inconsistency in the
presence of dependent types. If the very first transforma-
tion could not preserve types, surely there was no hope in
general.

This is related to the first problem with type preservation.
The complexity of a dependent type systemmakes it sensitive

to the interpretation of syntax. Dependent type systems
typically interpret each expression that appears in types as
a value to ensure decidability of type checking, interpret the
equality type, etc. After their CPS translation, expressions
encode control effects, and interpreting them as a single
value wasn’t possible.

Thankfully, that’s not what their work shows. The real
problem was the type system did not capture how continua-
tions ought to behave.

Barthe and Uustalu [5] use a standard CPS translation, and
a type translation corresponding to double negation. A term
𝑒 of type 𝐴 is CPS’d to a term of type (𝐴 → ⊥) → ⊥. This is
completely standard, well understood, and ethically wrong.
The CPS transformation in a compiler does not introduce
arbitrary continuations that can be assigned the function
type (𝐴 → ⊥), invoked arbitrarily. These continuations are
intended to be called exactly once, at the end of a computa-
tion, to jump to the next computation. The type (𝐴 → ⊥)
does not express that intent. So while this transformation is
type preserving [27], it’s not ethical.
To fix this, we need a type that guarantees a continua-

tion is called exactly once at the end of its computation. In
Bowman et al. [6], we design a dependently typed CPS’d
intermediate language following the dictums from Section 2.
We use a locally polymorphic answer type, assigning a CPS’d
expression a type ∀𝛼.(𝐴 → 𝛼) → 𝛼 . By parametricity, to
produce a value of type 𝛼 , any expression of this type must
(extensionally) call its continuation exactly once as the last
thing it does.
This isn’t quite enough to prove type preservation; we

also run into the second problem. Dependent types rely on
the structure of programs to pass expressions into the type
system. An application of a dependent function 𝑒1 𝑒2 pro-
duces a result type 𝐵 [𝑥 := 𝑒2], where the result type 𝐵 can
depend on the argument 𝑒2. As the control and data flow
of the program has been turned inside out, now passed by
invoking continuations, that expression 𝑒2 is replaced by
a continuation’s parameter 𝑦. This can interfere with type
checking; 𝐵 [𝑥 := 𝑒2] is not the same as 𝐵 [𝑥 := 𝑦] when 𝑦 is
some arbitrary parameter rather than a specific expression.

The solution is to reflect in the typing rules the structure
of the computation that must happen when executing on the
machine, similar to the suggestion of D’Silva et al. [13] but
at the level of ought rather than is. When a continuation is
jumped to, its parameter ought only take on one value, unlike
the parameter of a function. In our language, jumping to a
continuation is a syntactic form separate from function calls,
with a separate typing rule. It records an equation guarantee-
ing that the continuation parameter has a statically known
value, similar to 𝑦 = 𝑒2, reestablishing the original intent.
This also requires a representation of CPS’d computations
that can be “cast” to their underlying value, which our locally
polymorphic answer type allows by calling the computation



PEPM ’25, January 21, 2025, Denver, CO, USA William J. Bowman

with the identity function. We then prove type preserva-
tion, ensuring ethical compilation, since continuations are
restricted to their intended behaviour... in addition to some
other less interesting compiler correctness theorems.

Our work is not unique in this observation that continua-
tions must be restricted to rule out control effects [3, 33, 34],
or that such restrictions and interpretations of effectful com-
putations is necessary to combine effects in dependent type
theory [1, 2, 7, 30, 31]. What is unique is the ethical approach
we take to expressing and preserving what ought to be true.

4 Reconciliation
Truth and intent are not completely independent. Once we
have ethical axioms to bridge the gap, we can check that
what ought to be logically follows from what is true and
those axioms. If we’re not careful in how we reconcile is and
ought, though, we can fall into the is-ought gap.

This is particularly true when we’re trying to be pragmatic.
When the programmer has written some computation, some-
thing is true of that computation. Asking them to separately
write what ought to be true can feel redundant, and it is
tempting to not bother. If I implement a function, why do
I also need to write its type if the type is “obvious”. Surely,
pragmatically, we don’t need to write it down if it’s true.

This line of thinking is flawed. You might safely get away
with it if the goal of a type system is to rule out some
bugs [26], but not if your goal is ethical compilation. When
types express intent, and there is no conflict in expressing
what ought to be true separately from what is true. In fact,
it is vital, since ought cannot follow from is. The values and
beliefs of the programmer do not follow from the objective
reality of the program.

We must therefore be careful in how we use inference in
an ethical compiler.

Dictum 5. One should never infer ought from is.

Inference is an unfortunately common and tempting ap-
proach to many practical problems with expressing intent,
but doomed to failure. Type inference is a common version
of this, aiming to reduce the annotation burden on program-
mers by inferring what types are true in a program. However,
relying on inferred types will only ever tell us whether a pro-
gram is well typed in the sense of being consistent with itself,
not whether it has the types it ought. Inference is also sug-
gested as a solution to other is-ought problems. For example,
D’Silva et al. [13] suggest inference for security and timing
sensitive regions of code as a solution to security in the face
of optimizations. Ethically, such a project is doomed: even if
it could be done computationally (which would be surprising,
given Rice’s theorem), it could never tell us whether the code
ought to be secure or sensitive to timing.

This does not mean inference has no place in ethical com-
pilation. Consider the following two examples of ethical
inference.

In our work Wasm-Prechk [15], we discuss inference. The
annotations of the type system can be quite large and require
a lot of developer effort. Standard static analysis (inference)
techniques should be possible in many cases, including our
benchmarks, and could probably be used to optimize our
benchmarks as well as Wasm-Prechk.
However, we did not merely implement inference; that

would not be ethical. Inference could never solve the problem
we were trying to address: the ability for the programmer to
express that dynamic checks ought not be necessary. Infer-
ence can only answer a different question: can we conclude,
based on what is true, whether the dynamic checks are in
fact necessary. To be ethical, we first need the ability ex-
press intent in “Ought” space, and then use inference only
in “Is” space (Figure 1). Used this way, inference can help
us be ethical. If inference tells us something is not true, but
we have expressed that it ought to be true, then trying to
reconcile the two helps us identify that our computation is
not in keeping with our values.

In Chan et al. [8] we do implement inference, but ethically.
This work designs an extension to Rocq with sized typing.
Rocq relies on termination checking of recursive functions to
decide type equivalence, and therefore to decide well typed-
ness. Sized types expresses termination by annotating types
with a representation of their size, and ensuring that the size
decreases on recursive calls. The approach is more modular
and expressive than the syntactic termination criteria used
in Rocq. Sized typing is a nice solution to expressing intent,
and by reducing termination arguments to types, yields a
framework for preserving that intent. But there exists a lot of
Rocq code written without sized typing. Past work suggested
that complete inference was possible, which would enable
adding sized typing in a completely backwards compatible
way [32]. In this work, we show that is more or less true,
although it turns out not to be practical.

Our approach to inference is careful though, and we resort
to inference only to answer a question about truth. Inference
tells us whether there exist some sized typing argument
(within our size algebra) that proves the function terminates.
This proof is arbitrary; it’s not the reason the function ought
to terminate, which only the programmer can express. To
be ethical, inference would only be used to aid transition
from the current termination checker to a new sized type
system, with programmer involvement. Our approach makes
inference secondary to an explicit system.We first design and
study a sized type system where sized typing annotations
are expressed; that is, where a programmer could express
that a function ought to terminate through a sized typing
argument. Then we use inference only to ask whether it is
true that every Rocq program can be elaborated into our new,
explicit, sized type system.
Ethics aside, the is-ought gap is also the source of prag-

matic problems with inference. It is usually too expensive to



The Ethical Compiler: Addressing the Is-Ought Gap in Compilation (Invited Talk) PEPM ’25, January 21, 2025, Denver, CO, USA

just consider all possible facts, when you could simply ask
the programmer what they intend.
In the case of our sized types, while the inference algo-

rithm can decide whether functions terminate, it’s too slow
to be practical without input from the programmer. Infer-
ence must churn through all the truths about the program,
because it cannot know which functions ought to terminate
by a sized typing argument, and which ought not be consid-
ered; or which parameters to a function ought to be relevant,
and which ought to be ignored. We discuss that the only so-
lution to this is giving the programmer the ability to express
their intent: when do they want to use sized typing, which
functions ought to be checked, which variables ought to be
relevant, and which variable’s size ought to decrease.
Another example of pragmatic problems with inference

appears in secure compilation. Deng and Namjoshi [10] show
that inferring whether dead store elimination causes a secu-
rity problem is PSPACE-hard for finite-state programs, and
undecidable in general. This shouldn’t be a surprise with
our ethics lens on: of course we cannot decide whether the
programmer cares about a leak or not. So inference must
answer a harder question: is there any leak anywhere that
could, assuming the programmer cares, cause a problem in
any other part of the code?
Treating inference as only about truth, and as secondary

to expressing intent, is the only ethical way to use inference,
and avoids computational feasibility issues.
When we have both truth and intent, we can ethically

reconcile the two. Reconciliation is the third space in Figure 1.
This is all the work that takes what is, and what ought to be,
and does something with that information. Type checking,
verification, testing, etc., are all reconciliation. In the case of
type inference, for example, we might infer that a term is of
type Bool, and reconcile this against a claim that it ought to
be a Bool. If it is, then the term is correctly well typed.
One of my favourite instances of ethical reconciliation is

the system of blame as implemented in Racket’s higher-order
contract system [14]. Contracts are widely used in Racket
to provide complex dynamic assertions, expressing intent.
They’re also used in gradual typing, to guard the interface be-
tween a statically typed component and a dynamically typed
component. Tracking exactly where an error came from, and
which component is to blame, is a decades long area of re-
search [11, 12, 14]. The way Racket presents blame errors is
delightfully explicit about truth, intent, and reconciliation.
Each error message expresses three things: what was true
(is), what was expected (ought), and who is to blame for this
violation, assuming the contract is correct. This assumption
that the contract is correct is an explicit part of the error
message. Since the contract is written down by the program-
mer, it represents the programmer’s expressed intent, and
the compiler must trust it. But it’s also a piece of code, and
could contain a bug. The way blame is assigned and contract

violations are reported makes all of this incredibly explicit,
and ethical.
This is a great example particularly because of how diffi-

cult to understand errormessages can often be, and I attribute
much of that difficulty to the is-ought gap. For example,
Crichton et al. [9] study the difficulty with understanding
ownership errors in Rust.

Rust errors are great at reporting what is and is not true—
inconsistencies—but they fail to express how this relates to
what ought to be true, and Crichton et al. [9] note that Rust
learners struggle with this. Through the lens of ethics, we
can see where the problem arises. The Rust borrow checker
infers, from ownership information, truths related to per-
missions on pointers. Implicit in Rust are some beliefs about
what ought to be true about these permissions to ensure
safety, but the programmer cannot directly express what
permissions ought to be, and error messages do not men-
tion these permissions. As a result, a programmer can be
left in the dark about an ownership error, wondering why
some assortment of inconsistent truths have anything to
do with what ought to be true of their program. Crichton
et al. [9] manage to improve learning outcomes by making
explicit a permissions model of the borrow checker, and ex-
pressing what Rust believes permissions ought to be to the
programmer as part of debugging. Their model and debug-
ging tools enable reconciling inference against intent, rather
than simply raising an inconsistency error resulting from
inference.

Lacking this ability to reconcile is against ought, or relying
on inference, is a recipe for practical and ethical problems.

Dictum 6. One should reconcile is against ought.

5 Conclusion
Programming language design and implementation focuses
a lot on correctness, but it should not ignore ethics. Many
practical and philosophical problems arise when we ignore
or cannot express what ought to be true, or conflate what is
true with what ought to be true.
We should focus on ethical compilation, rather than cor-

rect compilation. We should not resort to claims that some-
thing is technically correct when the programmer believes
it ought not be correct. We should give the programmer the
ability to express what ought to be true, and continually im-
prove their ability to express intent. We should ensure that
the programmer’s intent is possible in their computations.
We should preserve the programmer’s intent. We should
never attempt to infer what the programmer intended, and
always reconcile truth and intent.
We should do all of this not because it is useful, or prag-

matic, or secure, or correct (though it is all of those), but for
no other reason than it is morally right.



PEPM ’25, January 21, 2025, Denver, CO, USA William J. Bowman

Acknowledgments
I’m particularly grateful to Conor McBride, Jacques Carette,
and others for many interesting discussions on intent in pro-
gramming languages, and Kathi Fisler for some interesting
discussion of ethics in computer science and programming
languages. I’m also very grateful for the PEPM PC and chairs
for their feedback, and the opportunity and forcing function
to write these thoughts down.

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), funding
reference number RGPIN-2019-04207. Cette recherche a été
financée par le Conseil de recherches en sciences naturelles
et en génie du Canada (CRSNG), numéro de référence RGPIN-
2019-04207.
This material is based upon work supported by the De-

fense Advanced Research Projects Agency (DARPA) and
Naval Information Warfare Center Pacific (NIWC Pacific)
under Contract No. NN66001-22-C-4027. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of DARPA or NIWC Pacific.

References
[1] Danel Ahman. 2017. Fibred Computational Effects. Ph. D. Dissertation.

University of Edinburgh. http://arxiv.org/abs/1710.02594
[2] Danel Ahman, Neil Ghani, and Gordon D. Plotkin. 2016. Dependent

Types and Fibred Computational Effects. In International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS),
Vol. 9634. https://doi.org/10.1007/978-3-662-49630-5_3

[3] Amal Ahmed and Matthias Blume. 2011. An Equivalence-Preserving
CPS Translation via Multi-Language Semantics. In International Con-
ference on Functional Programming (ICFP). https://doi.org/10.1145/
2034773.2034830

[4] Cornelius Aschermann. 2024. Tweet. https://x.com/is_eqv/status/
1767939306520543697 Accessed Nov. 8, 2024.

[5] Gilles Barthe and Tarmo Uustalu. 2002. CPS Translating Inductive and
Coinductive Types. InWorkshop on Partial Evaluation and Semantics-
based Program Manipulation (PEPM). https://doi.org/10.1145/509799.
503043

[6] William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2018.
Type-preserving CPS Translation of Σ and Π Types Is Not Not Possible.
Proceedings of the ACM on Programming Languages (PACMPL) 2, POPL
(Jan. 2018). https://doi.org/10.1145/3158110

[7] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. 2014. Com-
bining Proofs and Programs in a Dependently Typed Language. In
Symposium on Principles of Programming Languages (POPL). https:
//doi.org/10.1145/2535838.2535883

[8] Jonathan Chan, Yufeng Li, and William J. Bowman. 2023. Is Sized
Typing for Coq Practical? Journal of Functional Programming (JFP) 33
(2023). https://doi.org/10.1017/s0956796822000120

[9] Will Crichton, Gavin Gray, and Shriram Krishnamurthi. 2023. A
Grounded Conceptual Model for Ownership Types in Rust. Proceedings
of the ACM on Programming Languages (PACMPL) 7, OOPSLA2 (2023),
1224–1252. https://doi.org/10.1145/3622841

[10] Chaoqiang Deng and Kedar S. Namjoshi. 2016. Securing a Compiler
Transformation. In International Static Analysis Symposium. https:
//doi.org/10.1007/978-3-662-53413-7_9

[11] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and
Matthias Felleisen. 2011. Correct blame for contracts: no more scape-
goating. In Symposium on Principles of Programming Languages (POPL).
https://doi.org/10.1145/1926385.1926410

[12] Christos Dimoulas, Sam Tobin-Hochstadt, andMatthias Felleisen. 2012.
Complete Monitors for Behavioral Contracts. In European Symposium
on Programming (ESOP). https://doi.org/10.1007/978-3-642-28869-
2_11

[13] Vijay D’Silva, Mathias Payer, and Dawn Xiaodong Song. 2015. The
Correctness-Security Gap in Compiler Optimization. In IEEE Sym-
posium on Security and Privacy Workshops, SPW. 73–87. https:
//doi.org/10.1109/SPW.2015.33

[14] Robert Bruce Findler andMatthias Felleisen. 2002. Contracts for higher-
order functions. In International Conference on Functional Programming
(ICFP). ACM. https://doi.org/10.1145/581478.581484

[15] Adam T. Geller, Justin Frank, and William J. Bowman. 2024. Indexed
Types for a Statically Safe WebAssembly. Proceedings of the ACM
on Programming Languages (PACMPL) 8, POPL (Jan. 2024). https:
//doi.org/10.1145/3632922

[16] Joe Groff. 2024. Toot. https://f.duriansoftware.com/@joe/
113364795231040676 Accessed Nov. 15, 2024.

[17] Joe Groff. 2024. Toot. https://f.duriansoftware.com/@joe/
113365854022356161 Accessed Nov. 15, 2024.

[18] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and J. F.
Bastien. 2017. Bringing the web up to speed with WebAssembly. In
International Conference on Programming Language Design and Imple-
mentation (PLDI). https://doi.org/10.1145/3062341.3062363

[19] David Hume and Michael P. Levine. 1739. A Treatise of Human Nature:
On Understandings. Vol. 3. Sterling Publishing, 624. Part 1, Section 1.

[20] Abhinav Jangda, Bobby Powers, Emery Berger, and Arjun Guha. 2019.
Not So Fast: Analyzing the Performance of WebAssembly vs. Native
Code. (2019). https://doi.org/10.48550/arXiv.1901.09056

[21] Andrew Kennedy. 2006. Securing the .NET Programming Model. The-
oretical Computer Science 364, 3 (Nov. 2006). https://doi.org/10.1016/j.
tcs.2006.08.014

[22] Paulette Koronkevich and William J. Bowman. 2023. One Weird Trick
to Untie Landin’s Knot. In Workshop on Higher-Order Programming
with Effects (HOPE). https://www.williamjbowman.com/#hope2023-
landins-knot

[23] Paulette Koronkevich and William J. Bowman. 2024. Type Universes
as Allocation Effects. CoRR abs/2407.06473 (2024). https://doi.org/10.
48550/ARXIV.2407.06473

[24] Per Martin-Löf. 1975. An intuitionistic theory of types: Predicative
part. Studies in Logic and the Foundations of Mathematics 80 (1975),
73–118. https://doi.org/10.1016/s0049-237x(08)71945-1

[25] John McCarthy. 1961. A Basis for a Mathematical Theory of Compu-
tation, Preliminary Report. InWestern joint IRE-AIEE-ACM computer
conference (Western) (IRE-AIEE-ACM ’61 (Western)). ACM Press, 225–
238. https://doi.org/10.1145/1460690.1460715

[26] Robin Milner. 1978. A theory of type polymorphism in programming.
J. Comput. System Sci. 17, 3 (Dec. 1978), 348–375. https://doi.org/10.
1016/0022-0000(78)90014-4

[27] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999.
From System F to Typed Assembly Language. ACM Transactions
on Programming Languages and Systems (TOPLAS) 21, 3 (May 1999).
https://doi.org/10.1145/319301.319345

[28] George C. Necula. 1997. Proof-Carrying Code. In Symposium on Princi-
ples of Programming Languages (POPL). https://doi.org/10.1145/263699.
263712

[29] Daniel Patterson and Amal Ahmed. 2019. The next 700 compiler
correctness theorems (functional pearl). Proc. ACM Program. Lang. 3,
ICFP (2019), 85:1–85:29. https://doi.org/10.1145/3341689

http://arxiv.org/abs/1710.02594
https://doi.org/10.1007/978-3-662-49630-5_3
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/2034773.2034830
https://x.com/is_eqv/status/1767939306520543697
https://x.com/is_eqv/status/1767939306520543697
https://doi.org/10.1145/509799.503043
https://doi.org/10.1145/509799.503043
https://doi.org/10.1145/3158110
https://doi.org/10.1145/2535838.2535883
https://doi.org/10.1145/2535838.2535883
https://doi.org/10.1017/s0956796822000120
https://doi.org/10.1145/3622841
https://doi.org/10.1007/978-3-662-53413-7_9
https://doi.org/10.1007/978-3-662-53413-7_9
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/3632922
https://doi.org/10.1145/3632922
https://f.duriansoftware.com/@joe/113364795231040676
https://f.duriansoftware.com/@joe/113364795231040676
https://f.duriansoftware.com/@joe/113365854022356161
https://f.duriansoftware.com/@joe/113365854022356161
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.48550/arXiv.1901.09056
https://doi.org/10.1016/j.tcs.2006.08.014
https://doi.org/10.1016/j.tcs.2006.08.014
https://www.williamjbowman.com/#hope2023-landins-knot
https://www.williamjbowman.com/#hope2023-landins-knot
https://doi.org/10.48550/ARXIV.2407.06473
https://doi.org/10.48550/ARXIV.2407.06473
https://doi.org/10.1016/s0049-237x(08)71945-1
https://doi.org/10.1145/1460690.1460715
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/3341689


The Ethical Compiler: Addressing the Is-Ought Gap in Compilation (Invited Talk) PEPM ’25, January 21, 2025, Denver, CO, USA

[30] Pierre-Marie Pédrot. 2017. A Parametric CPS to Sprinkle CICwith Clas-
sical Reasoning. InWorkshop on Syntax and Semantics of Low-Level Lan-
guages. https://web.archive.org/web/20220122222238/https://www.cs.
bham.ac.uk/~zeilbern/lola2017/abstracts/LOLA_2017_paper_5.pdf

[31] Pierre-Marie Pédrot and Nicolas Tabareau. 2017. An Effectful Way
to Eliminate Addiction to Dependence. In Symposium on Logic in
Computer Science (LICS). https://doi.org/10.1109/lics.2017.8005113

[32] Jorge Sacchini. 2011. On type-based termination and dependent pattern-
matching in the calculus of inductive constructions. Ph. D. Dissertation.
École Nationale Supérieure des Mines de Paris. https://pastel.archives-
ouvertes.fr/pastel-00622429/document

[33] Hayo Thielecke. 2003. From Control Effects to Typed Continuation
Passing. In Symposium on Principles of Programming Languages (POPL).

https://doi.org/10.1145/640128.604144
[34] Hayo Thielecke. 2004. Answer Type Polymorphism in Call-by-name

Continuation Passing. In European Symposium on Programming (ESOP).
https://doi.org/10.1007/978-3-540-24725-8_20

[35] Hongwei Xi and Robert Harper. 2001. A Dependently Typed Assem-
bly Language. In International Conference on Functional Programming
(ICFP). https://doi.org/10.1145/507635.507657

[36] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and Understanding Bugs in C Compilers. In International Conference
on Programming Language Design and Implementation (PLDI). https:
//doi.org/10.1145/1993498.1993532

[37] Christoph Zenger. 1997. Indexed Types. Theor. Comput. Sci. 187, 1-2
(1997), 147–165. https://doi.org/10.1016/S0304-3975(97)00062-5

https://web.archive.org/web/20220122222238/https://www.cs.bham.ac.uk/~zeilbern/lola2017/abstracts/LOLA_2017_paper_5.pdf
https://web.archive.org/web/20220122222238/https://www.cs.bham.ac.uk/~zeilbern/lola2017/abstracts/LOLA_2017_paper_5.pdf
https://doi.org/10.1109/lics.2017.8005113
https://pastel.archives-ouvertes.fr/pastel-00622429/document
https://pastel.archives-ouvertes.fr/pastel-00622429/document
https://doi.org/10.1145/640128.604144
https://doi.org/10.1007/978-3-540-24725-8_20
https://doi.org/10.1145/507635.507657
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1016/S0304-3975(97)00062-5

	Abstract
	1 Introduction
	2 Expressing Truth and Intent
	3 Preserving Intent
	4 Reconciliation
	5 Conclusion
	Acknowledgments
	References

