
A Low-Level Look at A-Normal Form
WILLIAM J. BOWMAN, University of British Columbia, Canada

A-normal form (ANF) is a widely studied intermediate form in which local control and data flow is made

explicit in syntax, and a normal form in which many programs with equivalent control-flow graphs have a

single normal syntactic representation. However, ANF is difficult to implement effectively and, as we formalize,

difficult to extend with new lexically scoped constructs such as scoped region-based allocation. The problem,

as has often been observed, is that normalization of commuting conversions is hard.

This traditional view of ANF that normalizing commuting conversions is hard, found in formal models

and informed by high-level calculi, is wrong. By studying the low-level intensional aspects of ANF, we can

derive a normal form in which normalizing commuting conversion is easy, does not require join points, or

code duplication, or renormalization after inlining, and is easily extended with new lexically scoped effects.

We formalize the connection between ANF and monadic form and their intensional properties, derive an

imperative ANF, and design a compiler pipeline from an untyped 𝜆-calculus with scoped regions, to monadic

form, to a low-level imperative monadic form in which A-normalization is trivial and safe for regions. We

prove that any such compiler preserves, or optimizes, stack and memory behaviour compared to ANF. Our

formalization reconstructs and systematizes pragmatic choices found in practice, including current production-

ready compilers.

The main take-away from this work is that, in general, monadic form should be preferred over ANF,

and A-normalization should only be done in a low-level imperative intermediate form. This maximizes the

advantages of each form, and avoids all the standard problems with ANF.

CCS Concepts: • Theory of computation→ Type structures; • Software and its engineering→ Formal
software verification; Software performance.

Additional KeyWords and Phrases: Compilers, Optimization, A-normal form, CPS, Monadic Form, Intermediate

Representation, Normal Form, Normalization

ACM Reference Format:
William J. Bowman. 2024. A Low-Level Look at A-Normal Form. Proc. ACM Program. Lang. 8, OOPSLA2,

Article 277 (October 2024), 27 pages. https://doi.org/10.1145/3689717

1 Introduction
Intermediate representations (IRs), forms, and languages are used to simplify program analysis,

optimization, and compilation, e.g., by (1) explicating abstractions, such as evaluation order or data

flow, into explicit representations in syntax; (2) normalizing programs, so that many programs

equal under some equivalence class have a single normal representation; or (3) providing practical

equational theories for optimization or transformation.

A-normal form (ANF) is an intermediate representation widely studied in compilation [4, 9,

14, 16, 17, 20]. ANF can be described syntactically as an untyped 𝜆-calculus with let where all
computations must take values as their operands, and intermediate computations are explicitly

sequenced using let. This makes data and local control flow (everything except returning from a

Author’s Contact Information: William J. Bowman, University of British Columbia, Vancouver, Canada, wjb@

williamjbowman.com.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART277

https://doi.org/10.1145/3689717

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0002-6402-4840
https://doi.org/10.1145/3689717
https://orcid.org/0000-0002-6402-4840
https://doi.org/10.1145/3689717
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

277:2 William J. Bowman

call) explicit in the syntax, simplifying analysis, optimization, and compilation. For example, the

following two terms are equivalent, but Listing 2 is the A-normalization of Listing 1.

(+ (let (x (f 5)) 0) 6)

Listing 1. 𝜆-calculus

(let (x (f 5)) (+ 0 6))

Listing 2. ANF

Code generation from the Listing 2 is simpler than Listing 1, since the computation (+ 0 6) can be

compiled to something like mov y 0\n add y 6. Optimization is simpler; (+ 0 6) is trivially equal to

6, whereas optimizing the original term requires some additional control and data flow analysis.

ANF explicates many stack frames into syntax, so an ANF abstract machine can run with a smaller

stack; a machine for the 𝜆 term must evaluate the first operand of + to a value, after pushing the

frame (+ · 6), while an ANF machine need not push any frames.

ANF has several known disadvantages. We discuss these in detail later, but in short: ANF is not

closed under 𝛽-reduction (complicating inlining) and compiling branching expressions into ANF

requires care to avoid duplicating expressions or introducing procedure calls.

ANF suffers at least one additional disadvantage that is not discussed in the literature: transfor-

mation into ANF is difficult for lexically scoped effects. In Listing 2, the scope of x is extruded past

the addition expression compared to Listing 1. Effects attached to lexical binding can be reordered.

For example, we can translate Listing 1 and Listing 2 into a language with the lexically scoped

region system of Tofte and Talpin [25], where (letregion r e) allocates a new region r for use in e

and frees that region when the expression returns, and (@ r e) allocates in r the value resulting

from evaluating e. All values must be explicitly allocated and passed by reference.

(letregion r1

(@ r1 (+ (letregion r2

(let (x (f (@ r2 5)))

(@ r1 0)))

(@ r1 6))))

Listing 3. 𝜆-calculus with Regions

(letregion r1

(letregion r2

(let (x1 (@ r2 5))

(let (x (f x1))
(let (x2 (@ r1 0))

(let (x3 (@ r1 6))

(@ r1 (+ x2 x3))))))))

Listing 4. ANF with Regions

Listing 3 allocates an inner region r2, allocating 5 in region r2, calling f before allocating a result in

the outer region r1. r2 is freed when the computation of x completes. However, in Listing 4 r2 is

not freed until the end of the program. To target ANF safely (as in safe-for-space [22]), we must

either make the allocation and free operations explicit or resort to explicit continuations.

Typically, ANF is contrasted with continuation-passing stlye (CPS), another syntactic discipline

popular as an intermediate form, which also explicates control and data flow. We ignore CPS until

Subsection 6.1, but instead consider a more related alternative: monadic form.

Monadic form is the syntactic discipline induced by Moggi’s monadic meta-language [18] when

treating all non-value expressions as effectful computations (consider, e.g., partiality as the effect).

We can pronounce the monadic bind as let, and implement monadic return as an untagged inclusion

of values into computations. For example, Listing 1 (reproduced in Listing 5 for comparison) could

be implemented in monadic form as either Listing 6 or Listing 7, since all ANF terms are also in

monadic form. (Neither term would be produced by the usual translation of Listing 1.)

(+ (let (x (f 5)) 0)
6)

Listing 5. 𝜆-calculus

(let (y (let (x (f 5)) 0))
(+ y 6))

Listing 6. A Monadic Equivalent

(let (x (f 5))
(let (y 0) (+ y 6)))

Listing 7. An ANF Equivalent

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:3

Monadic form suffers none of the disadvantages of ANF. However, it is less normal. Being less

normal, transformations and analyses can be less obvious in monadic form compared to ANF. In

Listing 6, the computation (+ y 6) only takes values as operands, but it’s not obvious how to optimize

the expression. In Listing 7, we can obviously inline 𝑦, since it is bound to a constant.

ANF is monadic form with all commuting conversions normalized. Listing 6 and Listing 7 are

equal by associativity of bind, one of the commuting conversions. ANF also normalizes commuting

conversions for conditionals, such as (let (x (if v e1 e2)) e3) ≡ (if v (let (x e1) e3) (let (x e2) e3). Du-
plicating 𝑒3 is undesired, so typically this is abstracted into a continuation, called a join point, as in

(let (x (if v e1 e2)) e3) ≡ (let (j (𝝀 (y) e3)) (if v (let (x e1) (j x)) (let (x e2) (j x)))).
This difference between ANF and monadic form, normalization of commuting conversions, is at

the heart of ANF. It is both why ANF is attractive as an intermediate form, and causes many of the

problems of ANF.

This is not a novel observation. Kennedy [14] observes that normalizing commuting conversions

causes all the well known problems with ANF, before resorting to CPS. Maurer et al. [17] point out

these problems as well, observing that while join points avoid duplication, they inhibit optimizations,

and create a join point calculus to recover these optimizations in something ANF-like.

The problem with these commuting conversions is that, while the programs are extensionally

equal even when reasoning about monadic effects, they are intensionally different when we consider

details related to efficient execution and compilation. Duplicating codemay be extensionally fine, but

it’s intensionally bad. Commuting conversions are also not equal for otherwise-effectful programs

that use monadic form or ANF as intermediate forms but not to express monadic effects. That is

why when we add scoped regions, A-normalization causes a new problem.

In this paper, we formalize a series of IRs, normal forms, and transformation to make precise

what practioniers have long known: ANF, as typically studied, is not a good IR. Instead, normalizing

commuting conversions should happen later in the compiler pipeline, and monadic form should

be used until then. By fully understanding the intensional aspects of commuting conversions, we

can gain the benefits of ANF with none of the drawbacks. We make these intensional aspects

formal using abstract machines. To contrast to Maurer et al. [17], our motto is: work in monadic

form, but think in abstract machines. If we think of (let (x (if v e1 e2)) e3) as its computation in

an abstract machine, we might render it as (begin (set! x (if v e1 e2)) 𝑒3), which by (a low-level

interpretation of) associativity is the same as (begin (if v (set! x e1) (set! x e2)) 𝑒3). This avoids the
need to deal with join points explicitly, and still avoids code duplication. This idea is understood by

some compiler writers; for example, the high-performance Chez Scheme compiler uses a similar

transformation (Subsection 6.4). Our work formalizes and rationally reconstructions design choices

that some compiler writers have made in practice.

Concretely, our contributions are:

(1) A formalization of monadic form as normalizing a subset of the A-reductions, which is

important for clarifying the distinction between ANF and monadic form, and identifying the

source of problems with ANF (Section 2).

(2) An analysis of the abstract machine of high-level ANF and monadic form, with which we

formalize how ANF optimizes stack usage (Section 3).

(3) A formalization of a counterexample to the safety of direct-style A-normal form with respect

to scoped regions, which is important for understanding limitations of ANF in compilation

(Subsection 3.2).

(4) A formalization of imperative variants of monadic form and ANF derived from the machine

semantics and admissible equations, and an algorithm for normalizing commuting conver-

sions without join points or duplication. These are important as normal forms for compilation,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:4 William J. Bowman

v ::= 𝜄 | 𝑥 | (𝝀 (x) e)

𝑒 ::= v | (op #»𝑒) | (e e) | (let (x e) e) | (if0 e e e)

𝐸 ::= · | (let (x E) e) | (if0 E e e) | (E e) | (v E) | (op #»
v E

#»𝑒)

𝑂 ::= v | 𝑜𝑝

𝐸 [(let (x e1) e2)] −→𝐴 (let (𝑥 e1) 𝐸 [𝑒2]) 𝐴1

where 𝐸 ≠ ·
𝐸 [(if0 v e1 e2] −→𝐴 (if0 v 𝐸 [𝑒1] 𝐸 [𝑒2]) 𝐴2

where 𝐸 ≠ ·
𝐸 [(O #»

v)] −→𝐴 (let (𝑥 ′ (O #»
v)) 𝐸 [𝑥 ′]) 𝐴3

where 𝐸 ≠ ·, 𝐸 ≠ 𝐸′ [(let (x ·) e)], fresh 𝑥 ′

Fig. 1. 𝐴-normalization for 𝜆-calculus

optimization, and analysis as they enable the advantages of ANF but suffers none of the

known disadvantages (Section 4). These IRs are essentially similar to some that appear in

practice, including several IRs used in the Chez Scheme compiler (Subsection 6.4), although

our reconstruction of them is novel.

(5) An analysis of the abstract machine for imperative monadic form, with which we prove

that using monadic form followed by imperative A-normalization has the same or better

performance characteristics as ANF. In particular, we show that any such compiler (1) avoids

code duplication and join point introduced by commuting conversion in high-level ANF; (2)

preserves the stack behaviour of ANF; and (3) preserves the memory usage of scoped regions,

unlike the ANF compiler (Section 4).

(6) A model compiler designed to use monadic form as a high-level intermediate language,

and imperative ANF as a low-level IL. We argue that monadic form followed by imperative

A-normalization simplifies compiler implementation compared to ANF (Section 5).

All machines, reduction systems, languages, compilers, examples, and counterexample are imple-

mented in a PLT Redex [7, 15]; an artifact is publicly available [2].

2 𝐴-Normal and Monadic Form, Formally
2.1 𝐴-Normal Form
𝐴-normal form (ANF) is often called “administrative normal form” or sometimes “administrative

form”, but it is important and useful to think about ANF not as a vague form related to administrative

reductions, but formally and precisely as a normal form with respect to a set of reductions, as it

was originally formalized [9].

Formally,𝐴-normal form was introduced as the form normal with respect to the set of reductions

𝐴 = {𝐴1, 𝐴2, 𝐴3}, defined in Figure 1. A term 𝑒 represents an arbitrary 𝜆-calculus expression. An

operator 𝑜𝑝 is some n-ary primitive operator, such as addition, and must appear in operator position.

An 𝜄 is some ground value, such as a natural number, and a value v is any syntactic value. We

use the slight abuse of notation (O
#»𝑒) to mean an application—of either a function or an operator,

and restrict the function position to a value as necessary. The 𝐴-reductions use the call-by-value

evaluation contexts 𝐸 to identify a non-value in evaluation position, and lift and bind it explicitly.

This way, the data flow and local control flow is made explicit in the syntax.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:5

(Values) 𝑉 ::= 𝜄 | 𝑥 | (𝝀 (x) M)

(Computations) 𝑁 ::= 𝑉 | (V V) | (op #»
𝑉)

(Configuration) 𝑀 ::= 𝑁 | (let (x N) M) | (if0 V M M)

Fig. 2. 𝐴-normal Form

The 𝐴-reductions require some side conditions about the evaluation context to ensure non-

circular rewrites, and therefore to guarantee termination. We assume uniqueness of names and

consider terms up to 𝛼-equivalence, as is standard.

If we normalize a 𝜆-calculus expression by reducing the transitive compatible closure of the set

𝐴, we reach a normal form with respect to 𝐴, i.e., 𝐴-normal form, described syntactically by the

grammar in Figure 2. The non-terminal 𝑁 represents computations, while 𝑀 represents program

configurations that sequence computations.

As an example of 𝐴-normalization, consider the term in Listing 8, which 𝐴-normalizes to the

term in Listing 9 by 𝐴3 and then 𝐴1. All computations are explicitly sequenced using let, so all

operands are values.

(+ (+ 2 2)

(let (x 1)
(f x)))

Listing 8. 𝜆-calculus Example

(let (x1 (+ 2 2))

(let (x 1)
(let (x2 (f x))
(+ x1 x2))))

Listing 9. 𝐴-normalization

Unfortunately, ANF has some drawbacks. ANF is not closed under 𝛽-reduction, complicating

its calculus. The term (let (x ((𝝀 (𝑥 ′) M) V)) x) ought to be 𝛽-equivalent to (let (x𝑀 [𝑥 ′ := 𝑉]) x),
where 𝑥 ′ is substituted by v in 𝑀 . But this expression is invalid since 𝑀 cannot appear on the

right-hand side of let. The ANF 𝛽-equivalence must renormalize all commuting conversions. This

is a drawback as 𝛽-equivalence models inlining optimizations, and renormalization is inconvenient

and expensive for a compiler. The 𝐴2 rule causes exponential code duplication by duplicating the

continuation 𝐸. Consider Listing 11. The term LARGE is duplicated 2
3
times while 𝐴-normalizing

Listing 10—2
𝑛
where 𝑛 is equal to the occurrences of if for which LARGE is in the evaluation

context. Compilers using ANF avoid this using join points, but this canonical solution causes more

problems; we discuss this in Section 5. There are further benefits and problems with ANF, but these

only become obvious when we consider machines for executing in ANF. We return to these in

Section 3.

(let (x (if0 (if0 (if0 0 0 1)

0

1)

0

1))

LARGE)

Listing 10. Nested Branching

(if0 0 (if0 0

(if0 0 (let (x 0) LARGE) (let (x 1) LARGE))
(if0 1 (let (x 0) LARGE) (let (x 1) LARGE)))
(if0 1

(if0 0 (let (x 0) LARGE) (let (x 1) LARGE))
(if0 1 (let (x 0) LARGE) (let (x 1) LARGE))))
Listing 11. ANF Exponential Duplication

Rather than trying to patch ANF, we could question the premise: why did we choose to normalize

that equation when it causes so many problems? Wouldn’t it be more pragmatic to simply not

normalize the commuting conversion in 𝐴2, and allow (let (x (if0 V M1 M2)) M), which after all is

essentially just (begin (if0 V (set! x M1) (set! x M2)) M) after compilation. This pragmatic choice is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:6 William J. Bowman

(Value) 𝑈 ::= 𝜄 | 𝑥 | (𝝀 (x) C)

(Computations) 𝐶 ::= 𝑈 | (U U) | (op #»
𝑈) | (let (x C) C) | (if0 U C C)

Fig. 3. Monadic Form Syntax

appealing, and practioners have made it before—we return to this in Subsection 6.4. But formalisms

have dogmatically adherred to this problematic interpretation of ANF. We show how to formalize

these pragmatic choices. We start by deriving monadic form from ANF, and show the derived

normal form does not normalize this problematic equation.

2.2 Monadic Form
Because ANF is not merely a syntactic description, but the normal form of a set of reductions,

we can tweak those reductions to study alternatives normal forms. In fact, monadic form can be

defined as a subset of the 𝐴-reductions. We can work backwards from its syntax to the reductions

for which monadic form is normal.

We describe monadic form with the grammar in Figure 3, where we syntactically separate values

𝑈 and effectful computations𝐶 . If we consider the effect as partiality, then we are explicitly forcing

terms to value before calling each operation. In this definition, let corresponds to monadic bind,

and return is implicit by the untagged inclusion of U in C.

This form is preserved under the monad laws and commuting conversions.

(let (x U) E[x]) ≡ E[U] (Left Identity)

(let (x C) x) ≡ 𝐶 (Right Identity)

(let (y (let (x C) 𝐶1)) 𝐶2) ≡ (let (x C) (let (y 𝐶1) 𝐶2)) (Associativity)

(let (x (if0 U 𝐶1 𝐶2)) 𝐶) ≡ (if0 U (let (x 𝐶1) 𝐶) (let (x 𝐶2) 𝐶)) (Commute)

Both sides of the equations are in monadic form.

ANF is a normalization of monadic form: it normalizes the two commuting conversions, Equa-

tion Associativity and Equation Commute. The left-hand side of each of two rules is not in ANF,

while the right-hand side is.

There is one further commuting conversion common in the compilation literature that is inex-

pressible in our formalization of monadic form.

(if0 (if0 e e1 e2) e4 e5) ≡ (if0 e (if0 e1 e4 e5) (if0 e2 e4 e5)) (Case-of-Case)

Neither side is valid in our monadic form, since if must branch on a value, but if is a computation.

Both monadic form and ANF normalize this equation; we return to it in Subsection 6.2, as it’s

important for optimization.

We can derive monadic form as a normal form as follows. First, we modify the definition of

evaluation contexts. ANF was defined in a call-by-value
1
setting and, following CPS, concerned with

internalizing the evaluation order. Monadic form is different: it (non-strictly) expresses composing

effectful computations, ordering only the effects. This is reflected directly in the monad laws: to

reach monadic form, we should not force terms to either side of the laws, and both computations

and values are allowed on the right-hand side of let.
We define the non-strict monadic evaluation contexts 𝐸𝑏 , and the 𝐵-reductions for them, in

Figure 4. We omit let, but otherwise 𝐸𝑏 is the same as 𝐸. The let evaluation context in ANF is

1
ANF doesn’t require strict evaluation; e.g., let could be non-strict in the operational semantics for terms in ANF. But ANF

is normal with respect to 𝐴, which is defined using strict evaluation contexts.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:7

𝐸𝑏 ::= · | (if0 𝐸𝑏 e e) | (𝐸𝑏 e) | (v 𝐸𝑏) | (op #»
v 𝐸𝑏 #»𝑒)

𝐸𝑏 [(let (x e1) e2)] −→ (let (x e1) 𝐸𝑏 [𝑒2]) 𝐵1 where 𝐸𝑏 ≠ ·
𝐸𝑏 [(if0 v e1 e2)] −→ (let (𝑥 ′ (if0 v e1 e2)) E

𝑏 [𝑥 ′]) 𝐵2 where 𝐸𝑏 ≠ ·, fresh 𝑥 ′
𝐸𝑏 [(O #»

v)] −→ (let (𝑥 ′ (O #»
v)) 𝐸𝑏 [𝑥 ′]) 𝐵3 where 𝐸 ≠ ·, fresh 𝑥 ′

Fig. 4. 𝐵-normalizations for 𝜆-calculus

responsible for normalizing commuting conversions, which each have a non-value in the right-

hand side of a let. Recall Listing 10 has a conditional expression in the strict evaluation context

(let (x ·) e). We define the set 𝐵 = {𝐵1, 𝐵2, 𝐵3} of monadic reductions. These force a non-value in

evaluation position to a value, just as like 𝐴-reductions, but using monadic evaluation contexts. 𝐵1
and 𝐵3 are essentially unchanged, but we drop one now-unnecessary termination side condition

restricting 𝐸𝑏 . These two rules explicitly force operands to values via bind. 𝐵2 is an optimization of

𝐴2 to avoid code duplication. 𝐵2 produces a monadic form expression, but not an expression in

A-normal form. While we could use 𝐴2 in 𝐵 (they produce equal terms by Equation Commute),

𝐵2 avoids the problems of 𝐴2 and is more faithful to monadic form since it avoids unnecessarily

normalizing the equation.

Some 𝐵-normal forms are 𝐴-normal, but not all, and all 𝐴-normal forms are 𝐵-normal. Consider

our examples from earlier. Listing 8 has the same 𝐵-normal form and 𝐴-normal form, given in List-

ing 9. The second example, Listing 10, has a different 𝐵-normal form. Its 𝐴-normal form (Listing 11)

included exponential code duplication, but its 𝐵-normal form (Listing 13) does not. Instead, the

𝐵-normal form normalizes Equation Case-of-Case by introducing an intermediate let, which is

required by monadic form, but does not normalize Equation Associativity or Equation Commute.

(let (x (if0 (if0 (if0 0 0 1) 0 1) 0 1))

LARGE)

Listing 12. Nested Branching 𝜆-calculus

(let (x (let (x1 (if0 0 0 1))

(let (x2 (if0 x1 0 1))

(if0 x2 0 1))))

LARGE)

Listing 13. 𝐵-normalized

(if0 0 (let (x1 0) (if0 x1 (let (x2 0) (if0 x2 (let (x 0) LARGE) (let (x 1) LARGE)))
(let (x2 1) (if0 x2 (let (x 0) LARGE) (let (x 1) LARGE)))))

(let (x1 1) (if0 x1 (let (x2 0) (if0 x2 (let (x 0) LARGE) (let (x 1) LARGE)))
(let (x2 1) (if0 x2 (let (x 0) LARGE) (let (x 1) LARGE))))))
Listing 14. 𝐵- then 𝐴-normalized

𝐵-normal form avoids code duplication by binding all computations, including let and if, rather
than only binding values and primitive operations. This interpretation makes sense monadically,

but violates the ANF discipline, which seeks to make the order of evaluation of the inner lets
syntactically explicit by lifting them.

The specification of ANF and monadic form as a reduction system is useful for formalization. It

enables separating 𝐴-normal form into its component pieces. As we will see, the reduction systems

also serve as specifications so that we can prove certain properties of any compiler that targets the

normal forms.

Now that we know, formally, what these normal forms are, let us turn to their intensional

properties in the form of their machine semantics.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:8 William J. Bowman

Frame 𝐹 : := (· e) | (v ·) | (let (x ·) e) | (if0 · e e) | (op #»
v · #»𝑒)

Kontinuation (as stack of frames) 𝐾 : := mt | 𝐹 :: 𝐾

𝑒;𝐾 →
𝜆
𝑒;𝐾

((𝝀 (x) e) v);𝐾 →
𝜆

𝑒 [𝑥 :=v];𝐾 𝛽

(let (x v) e);𝐾 →
𝜆

𝑒 [𝑥 :=v];𝐾 𝜁

(if0 0 e1 e2);𝐾 →
𝜆

𝑒1;𝐾 ifz

(if0 v e1 e2);𝐾 →
𝜆

𝑒2;𝐾 ifnz where v ≠ 0

(op
#»
v);𝐾 →

𝜆
𝛿J𝑜𝑝 #»

v K;𝐾 primop

v; (𝐹 :: 𝐾) →
𝜆

𝐹 [v];𝐾 pop

𝐹 [𝑒];𝐾 →
𝜆

𝑒; (𝐹 :: 𝐾) push where 𝑒 ≠ v

Fig. 5. 𝜆-calculus CK Machine

3 Machine Semantics of ANF
In this section, we introduce abstract machines for ANF and monadic form. We formalize two

important facts: (1) ANF is an optimization, but (2) direct-style ANF is unsafe for scoped regions,

making extending ANF to scoped effects difficult. We show that 𝐴-normalization optimizes stack

usage—there are fewer frames in use after 𝐴-normalization compared to monadic form, in general.

However, we then introduce a region calculus with scoped regions, and show that direct-style

𝐴-normalization of the region calculus results in more regions and longer region lifetimes than in

monadic form, in general.

3.1 ANF vs 𝜆 Machines
We start with a CK machine [6–8] for arbitrary 𝜆-calculus expressions, defined in Figure 5. An

expression 𝑒 represents the code pointer. Intuitively 𝐾 is the rest of the computation, i.e., the

kontinuation, but we represent it as a stack of frames 𝐹 to better study the effect of ANF on the

control stack.

The machine transitions are completely standard. 𝛽-reduction performs capture-avoiding substi-

tution as a metafunction over terms, replacing a variable by a value. Primitive operators evaluate by

some denotation defined by 𝛿J_K. Non-redexes push, and values pop, until the machine terminates

with a value and an empty kontinuationmt. The rule push is deceptively simple; it parses a term

into a frame 𝐹 and subterm 𝑒 , an operation most real machine do not support directly.

Our example from Listing 8 evaluates in the CK machine as follows.

(+ (+ 2 2) (let (x 1) (f x))); mt
→

𝜆
(+ 2 2); ((+ · (let (x 1) (f x)))::mt) push

→
𝜆

4; ((+ · (let (x 1) (f x)))::mt) primop

→
𝜆

(+ 4 (let (x 1) (f x))); mt pop

→
𝜆

(let (x 1) (f x)); ((+ 4 ·)::mt) push

→
𝜆

(f 1); (+ 4 ·)::mt 𝜁

After, 𝐴-normalization (Listing 9), (1) all computations are either on the right-hand side of a let, so
we can combine the rules primop and 𝜁 , or in tail position (the injection from 𝑁 into𝑀)

2
so can

be evaluated in place without a push; (2) all operands are values, so evaluating an operator need

2
This makes tail calls a semantically distinct concept in this machine, and not an optimization.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:9

𝐶;𝐾 →
_nf
𝐶;𝐾

(let (𝑥 ′ ((𝝀 (x) M) V))𝑀 ′
);𝐾 →

_nf
𝑀 [𝑥 := 𝑉]; (let (𝑥 ′ ·)𝑀 ′

):: 𝐾 call

𝑉 ; (𝐹 :: 𝐾) →
_nf

𝐹 [𝑉];𝐾 return

((𝝀 (x) M) V);𝐾 →
_nf

𝑀 [𝑥 := 𝑉];𝐾 tail-call

(let (x V) M);𝐾 →
_nf

𝑀 [𝑥 := 𝑉];𝐾 move

(if0 0 M1 M2);𝐾 →
_nf

𝑀1;𝐾 ifz

(if0 V M1 M2);𝐾 →
_nf

𝑀2;𝐾 ifnz where 𝑉 ≠ 0

(let (x (op #»
𝑉)) M);𝐾 →

_nf
𝑀 [𝑥 := 𝛿J𝑜𝑝 #»

𝑉 K];𝐾 primop

(op

#»
𝑉);𝐾 →

_nf
𝛿J𝑜𝑝 #»

𝑉 K;𝐾 tail-primop

(let (x 𝐶1) 𝐶2);𝐾 →bnf 𝐶1; (let (x ·) 𝐶2):: 𝐾 bind where 𝐶1 ≠ 𝑁

Fig. 6. 𝐴- and 𝐵-Normal Forms CK Machines

never push a frame. Both (1) and (2) imply the only place a frame can be pushed is in a non-tail

function call.

Therefore, we can define the optimized and simpler machine for 𝐴- and 𝐵-normal forms, i.e.,

monadic forms, in Figure 6. We slightly abuse notation to define two different machines →𝑎𝑛𝑓

for 𝐴-normal forms, and →𝑏𝑛𝑓 for 𝐵-normal forms. Since →𝑎𝑛𝑓 is a subset of →𝑏𝑛𝑓 (except for

differences in metavariables), we present only one of the →𝑏𝑛𝑓 rules formally. The machine is

optimized in the sense that it requires strictly fewer transitions to evaluate ANF terms compared

to the 𝜆 CK machine, and simpler in the sense that the machine never needs to decompose a

term into frame and expression but looks only at the top-level computation, which maps well

to a real machine. In fact, the machine is so straightforward, one might imagine that it could be

interpreted as specifying a low-level register-transfer language; we do that in Section 4 using

explicit environments, after studying the high-level ANF machine in more detail. The bind rule

evaluates monadic terms that are not 𝐴-normal. For non-𝐴-normal terms, the return rule is both

the return instruction for calls, but also the monadic return.

Now, Listing 9 evaluates as follows.

(let (x1 (+ 2 2)) (let (x 1) (let (x2 (f x)) (+ x1 x2)))); mt
→anf (let (x 1) (let (x2 (f x)) (+ 4 x2))); mt primop

→anf (let (x2 (f 1)) (+ 4 x2)); mt move

The intermediate push and pop transitions are eliminated.

Monadic form does not remove all intermediate push and pop transitions, in general. It does

reduce some stack usage; recall that the above example is also 𝐵-normal, so 𝐵-normalization

also eliminates all of its stack usage. However, monadic form still supports binding non-trivial

computations, such as (let (x (if0 0 0 1)) C) (as in Listing 13), and so the bind rule is needed and

pushes a frame. Only the optimization (2) applies in a 𝐵-normal machine, but not optimization (1).

We formalize this in Theorem 3.1. We define the metafunction max-stack on machine traces D
as follows, and prove that 𝐴-normalizing any 𝐵-normal form optimizes stack usage.

max-stackJ_K : (D : (𝐶;𝐾 →∗
_nf
𝐶;𝐾)) → N

max-stackJ𝐶;𝐾 →0

_nf
𝐶;𝐾K = 0

max-stackJ𝐶;𝐾 →
_nf
𝐶′
;𝐾 ′ →∗

_nf
𝐶′′

;𝐾 ′′K =maxJlenJ𝐾K,max-stackJ𝐶′
;𝐾 ′ →∗

_nf
𝐶′′

;𝐾 ′′KK

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:10 William J. Bowman

𝑟 ∈ Regions

𝑒 : := | (letregion r e) | (@ r e)

𝐸 : := | (@ r E)

𝐹 : := | (free r) | (@ r ·)

𝑜 ∈ Offset

𝑎 : := (r . o)

𝑆 : := ∅ | (𝑆, 𝑎 ↦→ v)

Fig. 7. 𝜆𝑟 Syntax

Theorem 3.1 (𝐴-normalization Optimizes the Stack (Kontinuation)). If 𝑒 −→∗
𝐴
𝑀 where

D𝐵 : (𝑒;mt →∗
𝑏𝑛𝑓

v;mt) and D𝐴 : (𝑀 ;mt →∗
𝑎𝑛𝑓

v;mt), then trace D𝐴 uses no more frames than D𝐵 .

That is, max-stackJD𝐵K ≥ max-stackJD𝐴K. Furthermore, there exists a program𝐶 for which a trace

D𝐴 uses strictly fewer frames.

Proof. The proof is straightforward by induction on the trace D𝐵 . When D𝐵 takes a bind step,

𝐶 must take an 𝐴-reduction, and the 𝐴-reduction on the 𝐶 will either not increase or will decrease

the max-stackJ_K. □

This is more than a theoretical effect. The CertiCoq compiler has had two backends, a CPS and an

ANF backend, and ANF outperforms CPS [19–21]. Paraskevopoulou [19] attributes this to additional

heap allocation in CPS, noting that “sophisticated techniques to reduce heap allocation” could be

used in the CPS backend. CPS can result in additional heap allocation by allocating a continuation

for local control. Each frame in the CK machine corresponds to a continuation, and could cause

heap allocation of a closure in CPS. The ANF backend, by contrast, avoids this allocation, since

these frames are made explicit syntactically and never allocate. This is no more than we should

expect; 𝐴-normalization was partially derived from eliminating administrative redexes introduced

by CPS translation. This suggests that merely using ANF simplifies control-related optimization

compared to CPS, at least in the context of a fully mechanically verified compiler.

3.2 A Region Calculus and Machine
Unfortunately,𝐴-normalization is an unsafe optimization in some settings. In general, direct-style𝐴-

normalization is extends lexical scope, changing variable extent, lifetimes, and other effects related

to lexical scope. Extensionally, such as in a pure calculus when reasoning up to 𝛼-equivalence, this

is irrelevant. However, it matters when reasoning about intensional properties or effectful calculi.

We consider a version of the scoped regions of Tofte and Talpin [25].

We first extend our 𝜆-calculus with lexically scoped regions and region allocation; the syntax is

given in Figure 7. The expression (letregion r e) runs e with a new region r allocated in the store

𝑆3. After e returns, the region r is freed. In this calculus, all values must be explicitly allocated in

a region in the store. The form (@ r e) evaluates to a reference, by evaluating e to a value that is

stored in region r. All primitive operations and value must be explicitly allocated; the result of a

function must also be allocated before it returns. We also extend evaluation contexts, for 𝐴- and

𝐵-normalization of this syntax, and add a new frames for the machine semantics. The new frame

(free r) is unusual; it is not a frame of an evaluation context, but instead directs the machine to

free region r.

In Figure 8, we give a CSK machine [6–8] for 𝜆𝑟 . The machine includes a straightforward

extension of the transitions from the 𝜆 CK machine in Figure 5. The machine is unrealistic in that

all values are passed by references, whereas a realistic machine might avoid boxing word-sized

3
The allocation pattern forms a (data) stack (of regions), as explained by Tofte and Talpin [25]. The stack of regions is

irrelevant to us, while the control stack (kontinuation) 𝐾 is important, so we refer to allocation as occurring in the heap,

and use “stack” to refer to the control stack.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:11

𝐶; 𝑆 ;𝐾 →
𝜆𝑟
𝐶; 𝑆 ;𝐾

(a1 a2); 𝑆 ;𝐾 →
𝜆𝑟

𝑒 [𝑥 := 𝑎2]; 𝑆 ;𝐾 call where (𝝀 (x) e)= 𝑆 (𝑎1)
(let (x a) e); 𝑆 ;𝐾 →

𝜆𝑟
𝑒 [𝑥 := 𝑎]; 𝑆 ;𝐾 move

(if0 a e1 e2); 𝑆 ;𝐾 →
𝜆𝑟

𝑒1; 𝑆 ;𝐾 ifz where 0 = 𝑆 (𝑎)
(if0 a e1 e2); 𝑆 ;𝐾 →

𝜆𝑟
𝑒2; 𝑆 ;𝐾 ifnz where 0 ≠ 𝑆 (𝑎)

(op
#»𝑎); 𝑆 ;𝐾 →

𝜆𝑟
J𝑜𝑝

»

𝑆 (𝑎)K; 𝑆 ;𝐾 primop

𝐹 [𝑒]; 𝑆 ;𝐾 →
𝜆𝑟

𝑒; 𝑆 ; (𝐹 :: 𝐾) push where 𝑒 ≠ 𝑎

𝑎; 𝑆 ; (𝐹 :: 𝐾) →
𝜆𝑟

𝐹 [𝑆 (𝑎)]; 𝑆 ;𝐾 pop

(letregion r e); 𝑆 ;𝐾 →
𝜆𝑟

𝑒; 𝑆 ; ((free r) :: 𝐾) ralloc

𝑎; 𝑆 ; ((free r) :: 𝐾) →
𝜆𝑟

𝑎; freeJ𝑆, 𝑟K;𝐾 rfree

v; 𝑆 ; ((@ r ·) :: 𝐾) →
𝜆𝑟

(r . o); (𝑆 [(𝑟 .𝑜) := v];𝐾 alloc fresh 𝑜

Fig. 8. 𝜆𝑟 CSK Machine

data. However, this detail is irrelevant for our purposes: some ANF terms bind non-word sized data,

so any extension of a region lifetime is unsafe.

The machine is essentially similar to the 𝜆 CK machine, with two main differences: the represen-

tation of run-time values, and the new transitions for regions. The new region-related transitions

are given below the line. Run-time values are addresses, a pair (r . o) of a region and an offset into

that region, so all computations dereference an address 𝑎 in the store 𝑆 , written 𝑆 (𝑎). Syntactic
values must be allocated in a region, indicated by the frame, in the alloc transition. (letregion r e)

(implicitly) allocates a new region, and adds a free frame to the stack. The metafunction freeJ𝑆, 𝑟K
deallocates all addresses with the region 𝑟 in 𝑆 .

Consider the following example term’s evaluation in this machine. This example is an 𝜆𝑟 equiva-

lent of (∗ (∗ 1 2) (∗ 3 4)), with region sizes and lifetimes minimized. 𝑟0 is an initial region in which

the final result is allocated.

(letregion r2

(@ r0 (∗ (letregion r1 (@ r2 (∗ (@ r1 1) (@ r1 2))))

(letregion r3 (@ r2 (∗ (@ r3 3) (@ r3 4)))))))

∅ mt

→
𝜆𝑟

(@ r0 (∗ (letregion r1 (@ r2 (∗ (@ r1 1) (@ r1 2))))

(letregion r3 (@ r2 (∗ (@ r3 3) (@ r3 4))))))

∅ (free r2) ::mt

→
𝜆𝑟

(∗ (letregion r1 (@ r2 (∗ (@ r1 1) (@ r1 2))))

(letregion r3 (@ r2 (∗ (@ r3 3) (@ r3 4)))))

∅ (@ r0 ·)::(free r2)::mt

→
𝜆𝑟

...

→
𝜆𝑟

(∗ (r2.o1) (r2.o2)) [(𝑟2 .𝑜2) ↦→ 2] [(𝑟2 .𝑜1) ↦→ 12] (@ r0 ·)::(free r2)::mt
→

𝜆𝑟
24 [(𝑟2 .𝑜2) ↦→ 2] [(𝑟2 .𝑜1) ↦→ 12] (@ r0 ·)::(free r2)::mt

→
𝜆𝑟

(r0.o3) [(𝑟2 .𝑜2) ↦→ 2] [(𝑟2 .𝑜1) ↦→ 12] [(𝑟0.𝑜3) ↦→ 24] (free r2)::mt
→

𝜆𝑟
(r0.o3) [(𝑟0 .𝑜3) ↦→ 24] mt

Using this abstract machine, we can measure some simple allocation behaviour, such as:

(1) What is the maximum number of regions live at once (max-regionsJ_K)?
(2) What is the maximum number of live addresses, in all regions, at once (max-memoryJ_K)?

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:12 William J. Bowman

We omit their formal definitions, but these metafunctions are essentially similar to definition of

max-stackJ_K: they take a trace and measuring the maximum value in the trace. For the above

example, the max-regionsJ_K of the trace is 3 and the max-memoryJ_K is 4.
We extend 𝐴-normalization to 𝜆𝑟 with the following two 𝐴-reductions.

....

𝐸 [(letregion r e)] −→𝐴 (letregion r 𝐸 [𝑒]) 𝐴4

where 𝐸 ≠ ·
𝐸 [(@ r N)] −→𝐴 (let (𝑥 ′ (@ r N)) 𝐸 [𝑥 ′]) 𝐴5

where 𝐸 ≠ ·, 𝐸 ≠ 𝐸′ [(let (x ·) 𝑒′)], 𝐸 ≠ 𝐸′ [(@ r ·)], and fresh 𝑥 ′,

The side condition 𝐸 ≠ 𝐸′ [(@ r ·)] must also be added to the 𝐴3 reduction. The reduction system is

fully implemented in the artifact [2].

𝐴4 extends the lifetime of region 𝑟 , but this is necessary for𝐴3 from Figure 1 to lift an intermediate

computation. Concretely, 𝐴-normalizing the running example, we get the term in Listing 15,

which runs with max-regionsJ_K 4 and a max-memoryJ_K of 7, compared to the original 3 and 4,

respectively.

(letregion r2

(letregion r1

(let (x (@ r1 1))

(let (x1 (@ r1 2))

(let (x2 (@ r2 (∗ x x1)))

(letregion r3

(let (x3 (@ r3 3))

(let (x4 (@ r3 4))

(let (x5 (@ r2 (∗ x3 x4)))

(@ r0 (∗ x2 x5)))))))))))

Listing 15. 𝐴-Normalization of 𝜆𝑟 Example

(letregion r2

(let (x4 (letregion r1

(let (x2 (@ r1 1))

(let (x3 (@ r1 2))

(@ r2 (∗ x2 x3))))))

(let (x5 (letregion r3

(let (x (@ r3 3))

(let (x1 (@ r3 4))

(@ r2 (∗ x x1))))))

(@ r0 (∗ x4 x5)))))

Listing 16. 𝐵-Normalization of 𝜆𝑟 Example

These equations aren’t the only way to normalize regions, but they are the direct-style A-

normalization rules. We could alternatively bound the scope of 𝑟 using an explicit continuation as

in the following rule.

𝐸 [(letregion r e)] −→𝐴 (let (k (𝝀 () (letregion r 𝑒))) 𝐸 [(k)])
But this is not in direct style, and introduces a local continuation similar to join points. In our

opinion, this is resorting to using CPS, and not in the spirit of ANF.

Theorem 3.2 (Direct-Style 𝐴-Normalization is Region-Unsafe).

If𝐶−→∗
𝐴
𝑀 ,D𝐵 : (𝐶; ∅;mt →∗

𝜆𝑟
𝑎; 𝑆 ′;mt) andD𝐴 : (𝑀 ; ∅;mt →∗

𝜆𝑟
𝑎; 𝑆 ′′;mt), thenmax-regionsJD𝐴K

≥ max-regionsJD𝐵K, and max-memoryJD𝐴K ≥ max-memoryJD𝐵K. Furthermore, there exists 𝐶 and

D𝐴 such that max-memoryJ𝐷𝐴K > max-memoryJ𝐷𝐵K and max-regionsJ𝐷𝐴K > max-regionsJ𝐷𝐵K.

By contrast, we can extend easily 𝐵-normalization to 𝜆𝑟 with the following reductions, maintain-

ing direct style without extending scope.

....

𝐸𝑏 [(letregion r e)] −→𝐵 (let (x (letregion r e)) 𝐸𝑏 [𝑥]) 𝐵4
𝐸𝑏 ≠ ·

𝐸𝑏 [(@ r N)] −→𝐵 (let (𝑥 ′ (@ r N)) 𝐸𝑏 [𝑥 ′]) 𝐵5
𝐸𝑏 ≠ ·, 𝐸𝑏 ≠ 𝐸𝑏

1
[(let (x ·) e')], 𝐸𝑏 ≠ 𝐸𝑏

2
[(@ r ·)], fresh 𝑥 ′

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:13

𝑡 : := (begin #»𝑠 t) | v | (if0 v t t) | (call v #»
v) | (op #»

v)

𝑠 : := (begin #»𝑠) | (set! x v) | (set! x (op #»
v)) | (set! x (call v #»

v))

v : := (𝝀 (x) t) | 𝜄

Fig. 9. Imperative ANF Syntax (𝐴𝐵-Normal Form)

Since letregion is effectful, 𝐵4 binds it instead of lifting it, preserving the original lifetime. The

𝐵-normalization of our running example is given in Listing 16.

Theorem 3.3 (𝐵-Normalization is Region-Safe).

If 𝑒−→∗
𝐵
𝐶 ,D𝜆 : (𝑒; ∅;mt →∗

𝜆𝑟
𝑎; 𝑆 ′;mt) andD𝐵 : (𝐶; ∅;mt →∗

𝜆𝑟
𝑎; 𝑆 ′′;mt), then max-regionsJD𝜆K =

max-regionsJD𝐵K, and max-memoryJD𝜆K = max-memoryJD𝐵K.

4 Imperative 𝐴-Normalization
The problems with normalizing commuting conversion are merely with the syntax of ANF, and

not with (machine) semantics of commuting conversion. By designing a syntax based on the

ANF abstract machine, we get an imperative language very similar to ANF. Working backwards,

un-normalizing commuting conversions, we design an imperative monadic language in which

𝐴-normalization is safe, neither extending scope, nor duplicating continuations.

Recall from Figure 6 that each transition in the monadic CK machine uniquely maps to an

A-normal form expression. In Figure 9, we present an imperative A-normal form designed from the

transitions in the abstract machine, with begin for sequencing imperative statements.

Intuitively, a program is a sequence of statements 𝑠 followed by a tail-position operation (tail)

𝑡 producing the final value. We interpret the ANF let as an effectful set! operation; rather than
performing substitution, we set a variable in the machine state. Tails 𝑡 include operations for

machine transitions that correspond to all expression in 𝑀 position in ANF. For example, the

tail-call transition is realized by the call statement in tail position. All non-tail expressions in

ANF must appear on the right-hand side of a let in ANF, and therefore appear on the right-hand side
of set! in imperative ANF. These transitions—call, move, and primop—are realized by statements

𝑠 . The result is similar to a register-transfer language, although one with an infinite set of registers

𝑥 , higher-order functions, and primitive call and return.

The translation from ANF into this syntax is straightforward; we give a definition later in

Figure 19a. But for now, we want to work backwards from this syntax to imperative monadic form,

and demonstrate that an imperative interpretation of A-normalization within imperative monadic

form is safe and easy. So what must imperative monadic form be?

If set! is let, then we also need to support (set! x t), that is, a tail computation on the right-hand

side an assignment. This corresponds to (let (x C) C) in monadic form. We see this also by doing

code generation of Equation Associativity and Equation Commute, which would look like the

following.

(begin (set! y (begin (set! x t) 𝑡)) 𝑡) ≡ (begin (set! x t) (set! y 𝑡) 𝑡) (Imp. Associativity)

(begin (set! y (if v 𝑡1 𝑡2)) 𝑡) ≡ (if0 v (begin (set! y 𝑡1) t) (begin (set! y 𝑡2) t))
(Imp. Commute (1))

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:14 William J. Bowman

𝑡 : := (begin #»𝑠 t) | v | (if0 v t t) | (call v v) | (op #»
v)

𝑠 : := (begin #»𝑠) | (set! x v) | (if0 v s s) | (set! x t) | (set! x (op #»
v)) | (set! x (call v v))

v : := (𝝀 (x) t) | 𝜄

Fig. 10. Imperative Monadic Syntax

(set! x (if0 v 𝑡1 𝑡2)) −→𝐴𝐵 (if0 v (set! x 𝑡1) (set! x 𝑡2)) 𝐴𝐵1
(set! x (begin #»𝑠 t)) −→𝐴𝐵 (begin #»𝑠 (set! x t)) 𝐴𝐵2

Fig. 11. AB Reduction

To support both sides of the equations, we must allow begin and if0 on the right-hand side of a

set!. This requires one new statement.

t : := (begin #»𝑠 t) | v | (if0 v t t) | (call v #»
v) | (op #»

v)

s : := (begin #»𝑠) | (set! x v) | (set! x t) | (set! x (op #»
v)) | (set! x (call v #»

v))

v : := (𝝀 (x) t) | 𝜄
Equation Imp. Commute (1) still duplicates the continuation 𝑡 , but only because the syntax

supports conditional expressions, but not conditional statements. If we add a conditional statement,

we could rephrase the equation as the following.

(begin (set! y (if v 𝑡1 𝑡2)) 𝑡) ≡ (begin (if0 v (set! y 𝑡1) (set! y 𝑡2)) t) (Imp. Commute (2))

We perform the commuting conversion by duplicating the assignment to x rather than duplicating

the context in which x is bound. This isn’t possible in (high-level) ANF, since lexical binding cannot

export x, but it is possible when all lexical binding has been transformed into imperative statements.

Adding the conditional statement and set! with a complex right-hand side, we get the final

version of the imperative monadic form is in Figure 10.

In this imperative monadic syntax, we can easily perform the imperative equivalent of 𝐴-

normalization into imperative ANF by taking the congruent closure of the set of reductions

𝐴𝐵 = {𝐴𝐵1, 𝐴𝐵2} in Figure 11, yielding 𝐴𝐵-normal form
4
.

𝐴𝐵-normalization is straightforward. Unlike 𝐴-normalization and 𝐵-normalization, it does not

shuffle the evaluation contexts at all. It is a completely local transformation. We never need to deal

with join points, or CPS’d compilers, or code duplication. We gain all the stack optimization effect

of 𝐴-normalization (as we formalize next), the advantages of a register-transfer syntax for code

generation and machine implementation, etc.

The key idea in 𝐴𝐵-normalization is that lexical expressions must be elaborated into imperative

statements before 𝐴-normalization.

4.1 Machine Semantics of 𝐴𝐵-Normal Form
We use a CEK machine [6–8] to define a machine semantics for imperative monadic form in

Figure 12 and Figure 13. We then show that 𝐴𝐵-normalization optimizes the stack in the same way

as 𝐴-normalization.

The environment Σ (to distinguish it from evaluation contexts) represents the register file,

mapping variables to their values. We separate word values wv, which represent run-time values

4
We choose the name 𝐴𝐵 for two reasons: (1) this normalization yields the best of both 𝐴- and 𝐵-normalization (2) 𝐴𝐵-

normalization follows 𝐵-normalization, which was defined second after 𝐴-normalization, so 𝐴𝐵 is 3... in big-endian binary,

anyway.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:15

ℎv : := 𝜄 | (closure Σ (𝝀 (x) t))

𝑤v : := 𝑥 | 𝜄

Σ : := ∅ | Σ[𝑥 ↦→ ℎv]
𝐹 : := (begin (set! x ·) #»𝑠 t)

𝐾 : := mt | 𝐹 :: 𝐾

Fig. 12. CEK Machine Syntax

𝑡 ; Σ;𝐾 →𝐶𝐸𝐾 𝑡 ; Σ;𝐾

(begin (set! x wv) #»𝑠 t); Σ;𝐾 →𝐶𝐸𝐾 (begin #»𝑠 t); Σ[𝑥 := 𝑤v];𝐾 move

closure

(begin (set! x (𝝀 (x) t1))
#»𝑠 t2); Σ;𝐾 →𝐶𝐸𝐾 (begin #»𝑠 t2); Σ[𝑥 := (closure Σ (𝝀 (x) t1))];𝐾

(begin (set! x (call wv1 wv2)) #»𝑠 t2); Σ;𝐾 →𝐶𝐸𝐾 𝑡1; Σ
′ [𝑦 :=wv2]; (begin (set! x ·) #»𝑠 t2):: 𝐾 call

where Σ(wv1) = (closure Σ′
(𝝀 (y) t1))

v; Σ; 𝐹 :: 𝐾 →𝐶𝐸𝐾 𝐹 [v]; Σ;𝐾 return

(begin (if0 wv s1 s2) t); Σ;𝐾 →𝐶𝐸𝐾 (begin s1 t); Σ;𝐾 ifz-s

where Σ(wv) = 0

(begin (if0 wv s1 s2) t); Σ;𝐾 →𝐶𝐸𝐾 (begin s2 t); Σ;𝐾 ifnz-s

where Σ(wv) ≠ 0

(begin (set! x (op # »
wv)) t); Σ;𝐾 →𝐶𝐸𝐾 𝑡 ; Σ[𝑥 := J𝑜𝑝

»

Σ(𝑠v)K];𝐾 primop

(op
»
wv); Σ;𝐾 →𝐶𝐸𝐾 J𝑜𝑝

»

Σ(wv)K; Σ;𝐾 tail-primop

(if0 wv t1 t2); Σ;𝐾 →𝐶𝐸𝐾 𝑡1; Σ;𝐾 ifz-t

where Σ(wv) = 0

(if0 wv t1 t2); Σ;𝐾 →𝐶𝐸𝐾 𝑡2; Σ;𝐾 ifnz-t

where Σ(wv) ≠ 0

(begin (set! x t1) #»𝑠 t2); Σ;𝐾 →𝐶𝐸𝐾 𝑡1; Σ;(begin (set! x ·) #»𝑠 t2) :: 𝐾 ab

(begin (begin #»𝑠1)
#»𝑠2 t); Σ;𝐾 →𝐶𝐸𝐾 (begin #»𝑠1

#»𝑠2 t); Σ;𝐾 admin1

(begin t); Σ;𝐾 →𝐶𝐸𝐾 t; Σ;𝐾 admin2

Fig. 13. CEK Machine for Imperative Monadic Form

that can be eliminated, and heap values hv, which must be bound to a name and intuitively would

be allocated in memory. We use the syntax Σ(𝑤v) get the value of𝑤v, either dereferencing𝑤v in

Σ if𝑤v is a variable, or returning𝑤v if not. The code continues to represent the program counter,

and the kontinuation kontinues to represent the call stack. W.l.o.g., we assume that all 𝝀s appear
on the right-hand side of a set!, to simplify implementing closures. This can be implemented by

another 𝐵-reduction that binds 𝝀, treating it as a computation rather than a value (which it is, in

this machine; it performs allocation).

This machine is essentially similar to the monadic CK machine in Figure 6, but using an environ-

ment rather than substitution. The environment is necessary with the imperative interpretation

of let as set!. We also require two administrative reductions, admin1 and admin2, to enable com-

posing s internally using begin, although these could be normalized to simplify the final machine

semantics.

There is one key difference: the ab transition, which cannot occur in ABNF but can in imperative

monadic form. This rule, and call for a non-tail call, both push a frame (begin (set! x ·) t). After
𝐴𝐵-normalization, the ab rule cannot occur, so we regain the useful property that only non-tail

calls push a stack frame.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:16 William J. Bowman

It’s straightforward to show that 𝐴𝐵-normalization is an optimization of the stack, just like

𝐴-normalization.

Theorem 4.1 (𝐴𝐵-Normalization Optimizes the Stack). If 𝑡 −→∗
𝐴𝐵

𝑡 ′ where
D𝐵 : (𝑡 ; ∅;mt →∗

𝐶𝐸𝐾
v; 𝑆 ;𝐾) and D𝐴 : (𝑡 ′; ∅;mt →∗

𝐶𝐸𝐾
v
′
; 𝑆 ′;𝐾 ′

), then trace D𝐴 uses no more frames

than D𝐵 . That is, max-stackJD𝐵K ≥ max-stackJD𝑎K. Furthermore, there exists a program 𝑡 for

which a trace max-stackJD𝐵K > max-stackJD𝐴K.

Proof. The proof proceeds by induction on the trace D𝐵 . The two interesting cases corre-

spond to the 𝐴𝐵 reductions; all other cases preserve max stack size. We sketch the case for 𝑡 =

(begin (set! x (begin s t1)) t2) as a diagram; the other case is similar.

(begin (set! x (begin #»𝑠 t1)) t2); Σ;𝐾 (begin #»𝑠 t1); Σ; (begin (set! x ·) t2) :: 𝐾

𝑡1; Σ
′
;𝐾 ′ + (begin (set! x ·) t2) :: 𝐾

(begin #»𝑠 (set! x t1) t2); Σ;𝐾 (begin (set! x t1) t2); Σ;𝐾 ′ + 𝐾

𝐶𝐸𝐾∗

𝐴𝐵2

𝐶𝐸𝐾−ab

>max-stack

𝐶𝐸𝐾∗

Before 𝐴𝐵-normalization, a program of this shape must push the frame 𝐹 = (begin (set! x ·) t2),
since the right-hand side of the instruction is a complex tail. But𝐴𝐵-normalization, via the𝐴𝐵2 rule,

eliminates that one stack frame by reassociating the set!. In the machine state after evaluating the

𝐴𝐵-normalized program, the instructions
#»𝑠 evaluate in a subtrace, producing a stack 𝐾 ′ +𝐾 (where

+ is the append operation on stacks). The resulting stack is one frame smaller than 𝐾 ′ + 𝐹 :: 𝐾 . The

result follows by the induction hypotheses, which guarantees that the subtraces for
#»𝑠 , 𝑡1, and 𝑡2 do

not increase the stack size. □

4.2 𝐴𝐵-Normalization and Regions
Recall our key idea claims that we must elaborate lexical expressions into imperative statements to

solve 𝐴-normalization. Let us test this idea against lexically scoped regions.

Unlike let5, letregion has an effect at the beginning and end of its scope. We can compile lexical

regions using something like the following code generator.

cgJ_K : 𝐶 → 𝑡

cgJ(letregion r C)K = (begin (ralloc r) (set! x cgJ𝐶K) (rfree r) x)
cgJ(@ r N)K = (begin (set! x (alloc r cgJ𝑁 K)) x)

This syntax begins to look suspiciously like monadic regions [11, 12].

We extend the CEK machine into a CESK machine [6–8], using the store to model regions. The

machine essentially smashes together the previous two machines. We give only the key rules, for

brevity, but a complete implementation is available in the artifact [2].

We extend our imperative monadic syntax with imperative regions in Figure 14. There are two

main differences. First, the additional instructions for ralloc and rfree, which correspond to the

ralloc and rfree transitions of the CSK machine for the monadic region calculus. Second, as

all values must be passed by reference, all the prior value positions and primitive operators are

wrapped in alloc, which corresponds to the alloc transition of the CSK machine in Figure 8. To

5
Strictly, there is an effect at the end of let’s scope: the variable is dead. We could introduce a marker for the end-of-lifetime

of a variable into the imperative language. But this sort of information is simple to infer via liveness analysis.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:17

𝑡 : := (begin #»𝑠 t) | 𝑟v | (alloc r v) | (if0 rv t t) | (call rv rv) | (alloc r (op #»𝑟v))

𝑠 : := (begin #»𝑠) | (if0 rv s s) | (set! x (alloc r v)) | (set! x rv) | (set! x t)
| (set! x (alloc r (op #»𝑟v))) | (set! x (call rv rv)) | (ralloc r) | (rfree r)

v : := 𝜄 | 𝑥 | 𝑎 | (𝝀 (x) t)

𝑎 : := (𝑟 .𝑜)
𝑟v : := 𝑎 | 𝑥
𝑤v : := 𝜄 | 𝑎

ℎv : := (closure Σ (𝝀 (x) t)) | 𝑤v

𝐹 : := (begin (set! x ·) #»𝑠 t)

𝑆 : := ∅ | 𝑆 [𝑎 ↦→ ℎv]
Σ : := ∅ | Σ[𝑥 := 𝑎]

Fig. 14. Imperative Monadic w/ Regions Syntax

𝑡 ; Σ; 𝑆 ;𝐾 →
𝐶𝐸𝑆𝐾

𝑡 ; Σ; 𝑆 ;𝐾

· · ·
move

(begin (set! x rv) #»𝑠 t); Σ; 𝑆 ;𝐾 →
𝐶𝐸𝑆𝐾

(begin #»𝑠 t); Σ[𝑥 := Σ(rv)]; 𝑆 ;𝐾
alloc

(begin (set! x (alloc r wv)) #»𝑠 t); Σ; 𝑆 ;𝐾 →
𝐶𝐸𝑆𝐾

(begin #»𝑠 t); Σ[𝑥 := (𝑟 .𝑜)]; 𝑆 [(𝑟 .𝑜) := v];𝐾
fresh 𝑜

ralloc

(begin (ralloc r) #»𝑠 t); Σ; 𝑆 ;𝐾 →
𝐶𝐸𝑆𝐾

(begin #»𝑠 t); Σ; 𝑆 ;𝐾
rfree

(begin (rfree r) #»𝑠 t); Σ; 𝑆 ;𝐾 →
𝐶𝐸𝑆𝐾

(begin #»𝑠 t); Σ; free(𝑆, 𝑟);𝐾
call

(begin (set! x (call rv1 rv2)) #»𝑠 t); Σ; 𝑆 ;𝐾 →
𝐶𝐸𝑆𝐾

𝑡1; Σ1 [𝑦 :=rv2]; 𝑆 ; ((begin (set! x ·) #»𝑠 t) :: 𝐾)
where (closure Σ1 (𝝀 (y) t1)) = 𝑆 (Σ(rv1))

ab

(begin (set! x t1) #»𝑠 t); Σ; 𝑆 ;𝐾 →
𝐶𝐸𝑆𝐾

𝑡1; Σ; 𝑆 ;𝐾

Fig. 15. CESK Machine for Imperative Monadic w/ Regions

ensure all values are passed by reference, all value operands are now register values rv—either a

variable x or an address. Heap values are now explicitly allocated in the store.

We define the key rules of the CESK machine in Figure 15. The move transition dereferences a

register value rv, either reading the value from a register x or if rv is an a using it directly. Then

the register file is updated to map x to that value. The alloc transition allocates a word value wv

in memory to a fresh address in region r, updating the regsiter file with x mapped to that address.

There are analogous instructions for allocating closures and allocating the result of a primop, as well

as analogous instructions for allocating in tail position. The ralloc transition allocates the region

r, which in this machine is a no-op. The rfree transition frees a region. These two corresponds to

the transitions of the same name in the CSK machine, but as they are now instructions, they do not

use the stack. The only transitions that push a stack frame are the non-tail call transition, and the

ab transition for not 𝐴𝐵-normal terms.

With this machine, we can now 𝐴𝐵-normalize and run our earlier region example without ex-

tending lifetimes, but with optimized stack usage. Recall from Listing 15 that 𝐴-normalization

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:18 William J. Bowman

increased max-regionsJ_K and max-memoryJ_K. In Listing 17, we perform code generation fol-

lowed by 𝐴𝐵-normalization on the monadic example from Listing 16. In Listing 18, we perform

code generation of the ANF example from Listing 15.

1 (begin
2 (ralloc r2)
3 (ralloc r1)

4 (set! x2 (alloc r1 1))

5 (set! x3 (alloc r1 2))

6 (set! xt1 (alloc r2 (∗ x2 x3)))
7 (rfree r1)

8 (set! x4 xt1)
9 (ralloc r3)

10 (set! x (alloc r3 3))

11 (set! x1 (alloc r3 4))

12 (set! xt2 (alloc r2 (∗ x x1)))
13 (rfree r3)

14 (set! x5 xt2)
15 (set! xt3 (alloc r0 (∗ x4 x5)))
16 (rfree r2)
17 xt3)

18

Listing 17. 𝐴𝐵-Normalized · Code Gen · Monadic

1 (begin
2 (ralloc r2)
3 (ralloc r1)

4 (set! x (alloc r1 1))

5 (set! x1 (alloc r1 2))

6 (set! x2 (alloc r2 (∗ x x1)))
7 (ralloc r3)

8 (set! x3 (alloc r3 3))

9 (set! x4 (alloc r3 4))

10 (set! x5 (alloc r2 (∗ x3 x4)))
11 (set! xt1 (alloc r0 (∗ x2 x5)))
12 (rfree r3)

13 (set! xt2 xt1)
14 (rfree r1)

15 (set! xt3 xt2)
16 (rfree r2)
17 xt3)

18

Listing 18. Code Generation · ANF
The lifetime of r1 is extended by 𝐴-normalization, but not 𝐵-normalization or 𝐴𝐵-normalization,

and 𝐴𝐵-normalization has eliminated all the stack usage of monadic form. The formal proof is

similar to that of Theorem 3.2; note that𝐴𝐵-normalization does not change the order of instructions.

Theorem 4.2 (𝐴𝐵-Normalization is Region-Safe).

If 𝑡𝑀−→∗
𝐴𝐵
𝑡𝐴𝐵 , D𝑀 : (𝑡𝑀 ; ∅; ∅;mt →∗

𝐶𝐸𝑆𝐾
𝑎; Σ; 𝑆 ;mt) and D𝐴𝐵 : (𝑡𝐴𝐵 ; ∅; ∅;mt →∗

𝐶𝐸𝑆𝐾
𝑎; Σ′

; 𝑆 ′;mt),
then max-regionsJD𝑀K = max-regionsJD𝐴𝐵K, and max-memoryJD𝑀K = max-memoryJD𝐴𝐵K, and
max-stackJD𝑀K ≥ max-stackJD𝐴𝐵K. Furthermore, there exists a program 𝑡 with trace D𝐴𝐵 such

that max-stackJ𝐷𝑀K > max-stackJ𝐷𝐴𝐵K.

5 An 𝐴𝐵-Normal Compiler
Formalizing these normal forms as reduction systems is useful for metatheory, allowing us to prove

generic properties of any compiler that targets these normal forms, but the formalism ignores

important details about how to implement a compiler using these normal forms. In this section,

we define two compilers: the ABnormal compiler, and the ANF compiler. Their pipelines are

summarized in Figure 16. The ABnormal compiler targets 𝐴𝐵-normal form via monadic form and

𝐴𝐵-normalization, while the ANF compiler targets 𝐴𝐵-normal form via 𝐴-normalization. We show

that the compiler design is simplified using 𝐴𝐵-normalization compared to 𝐴-normalization.

5.1 ANF Compiler
There are pragmatic problems to implementing an effective compiler into ANF. This is one of the

major disadvantages of targeting ANF directly: normalizing commuting conversions while also

sequencing computations introduces (unnecessary) complexity.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:19

𝜆-calculus

ANF Monadic Form

Imp. Monadic

ABNF ABNF

a-normalize

mf

cg

cg

ab-normalize

Fig. 16. Compiler Architecture

𝜅 : := · | (let (x ·) M)

anfJ𝑒K𝜅 = 𝑀

anfJ𝜄K𝜅 = 𝜅 [𝜄]
anfJ𝑥K𝜅 = 𝜅 [𝑥]
anfJ(𝝀 (x) e)K𝜅 = 𝜅 [(𝝀 (𝑥) anfJ𝑒K·)]
anfJ(e1 e2)K𝜅 = anfJ𝑒1K(let (x1 ·) anfJ𝑒2K(let (x2 ·) 𝜅 [(𝑥1 𝑥2)]))
anfJ(if0 e e1 e2)K𝜅 = anfJ𝑒K(let (f (𝝀 (y) 𝜅 [𝑦]))

(let (x ·) (if0 x anfJ𝑒1K(let (x1 ·) (f x1))
anfJ𝑒2K(let (x2 ·) (f x2)))))

anfJ(op #»𝑒)K𝜅 = anfJ𝑒𝑖K(let (𝑥𝑖 ·) anfJ𝑒𝑖1K (let (𝑥𝑖1 ·) ... 𝜅 [(𝑜𝑝 #»𝑥)]))
anfJ(let (x e1) e2)K𝜅 = anfJ𝑒1K(let (x ·) anfJ𝑒2K𝜅)

Fig. 17. 𝜆-calculus to ANF Compiler with Join Points

We define ANF translation in Figure 17. This implementation requires managing some complexity.

The main issue in the definition is that the result of ANF translation is an𝑀 , which cannot be

composed internally with another𝑀 . Some other external technique is needed to compose two𝑀s.

This is a result of the requirement that we normalize Equation Associativity and Equation Commute.

We use the original technique of Flanagan et al. [9], in which the compiler reifies the evaluation

context of the reduction system as a meta-language continuation that builds target language terms.

The compiler is indexed by this continuation, and builds up the translation in the continuation,

rather than directly returning the translated term. The continuation has type 𝑉 → 𝑀 . The original

Flanagan et al. [9] version did not actually produce ANF terms, but monadic terms, to avoid code

duplication. The typical solution in the literature to generating ANF without code duplication is

to introduce a join point [1, 4, 14, 17]. This implementation technique has been formalized and

verified to be correct with respect to typing, whole program compilation, and separate compilation

by Koronkevich et al. [16] in the context of an ANF compiler for dependent types.

The first bit of complexity is that we write the compiler in CPS. This adds some complexity to

the implementation, and may negatively impact compile-time performance. The compiler anfJ𝑒K𝜅
takes a source term 𝑒 and an ANF evaluation context (continuation) 𝜅. When 𝑒 is a value v, it’s

translated by calling the continuation with the value 𝜅 [v], forming a complete ANF program.

Otherwise, the subterms are translated, calling the compiler in CPS: a subterm is translated with a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:20 William J. Bowman

mfJ𝑒K = 𝐶

mfJ𝜄K = 𝜄

mfJ𝑥K = 𝑥

mfJ(𝝀 (x) e)K = (𝝀 (x) mfJ𝑒K)
mfJ(e1 e2)K = (let (x1 mfJ𝑒1K) (let (x2 mfJ𝑒2K) (x1 x2)))
mfJ(if0 e e1 e2)K = (let (x mfJ𝑒K) (if0 x mfJ𝑒1K mfJ𝑒2K))
mfJ(op #»𝑒𝑖)K = (let

»

(𝑥𝑖 mfJ𝑒𝑖K) (op #»𝑥𝑖))

mfJ(let (x e1) e2)K = (let (x mfJ𝑒1K) mfJ𝑒2K)

Fig. 18. 𝜆-calculus to Monadic Form Compiler

new continuation, which when called with an ANF value, produces an ANF term. Compiling n-ary

operators requires a fold over the list of operands, which is slightly informally specified.

It’s possible to avoid this CPSed compiler, but empirically this approach appears to be easier

to reason about. An alternative involves returning two values, the tail of the computation𝑀 and

the list of introduced bindings, and eventually merging them (see e.g., Siek [23]). Bowman [3]

attempted a proof of compiler correctness for ANF using a technique that relied on reasoning

about lists of introduced bindings in this way, but the formalism did not scale to join points or

branching constructs in general. By contrast, Koronkevich et al. [16] provided an extension of the

ANF translation, with join points and branching, proving correctness entirely by a dependent typing

of the compiler’s continuation. The history with compiler verification suggests that if we care

about reasoning, the CPSed compiler is the right approach, as it leads to a scalable, compositional,

verifiable compiler.

The second bit of complexity is the representation of the join point in the target language. If we

just use 𝝀, as we do in the above translation, we introduce a procedure call for every branch. Worse,

it’s a closure, since there are free variables in those branches, introducing allocation and memory

indirects. Instead, we need an intermediate language with some notion of continuation, ideally one

that introduces no allocation, allowing registers and frames to be shared between the caller and

callee. This is possible—for example, Kennedy [14] and Tolmach and Oliva [26] gives intermediate

languages with constructs for introducing a local continuation, which could be compiled separately,

and contrast this with ANF. Maurer et al. [17] add a primitive join point form and equations for

reasoning about them, citing problems with ANF. Cong et al. [4] add control operators, and types

to distinguish different kinds of continuations, to enable optimizing using either or both ANF or

CPS. All these choices increases the complexity of the IL, with new abstractions for procedures and

continuations.

While managing all this complexity and using ANF successfully is possible, it is unnecessary.

Our ANF compiler is more complex and unsafe for scope.

5.2 Monadic Compiler
We define the monadic form translation in Figure 18. The monadic form compiler merely sequences

intermediate computation, but does not normalize commuting conversions.

The monadic form translation is straightforward; every expression can be locally transformed to

sequence computation. The simplicity is because the compiler return a𝐶 , and a𝐶 can be composed

with any other 𝐶 using let. That is, the simplicity relies on not normalizing Equation Associativity

and Equation Commute.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:21

acgJ_K : 𝑀 → 𝑡

acgJ(let (x N) M)K = (begin (set! x acgJ𝑁 K𝑁)
acgJ𝑀K)

acgJ(if0 V M1 M2)K = (if0 acgJ𝑉 K𝑉 acgJ𝑀1K
acgJ𝑀2K)

acgJ𝑉 K = acgJ𝑉 K𝑉
acgJ𝑁 K = acgJ𝑁 K𝑁
acgJ_K𝑁 : 𝑁 → 𝑡

acgJ(O #»
𝑉)K𝑁 = (O

»

acgJ𝑉 K𝑉)

acgJ𝑉 K𝑁 = acgJ𝑉 K𝑉
acgJ_K𝑉 : 𝑉 → 𝑡

acgJ𝑥K𝑉 = 𝑥

acgJ𝜄K𝑉 = 𝜄

acgJ(𝝀 (x) M)K𝑉 = (𝝀 (x) acgJ𝑀K)

(a) From ANF

mcgJ_K : 𝐶 → 𝑡

mcgJ(let (x C1) C2)K = (begin (set! x mcgJ𝐶1K)
mcgJ𝐶2K)

mcgJ(if0 U C1 C2)K = (if0 mcgJ𝑈 K mcgJ𝐶1K
mcgJ𝐶2K)

mcgJ(O #»
𝑈)K = (O

»

mcgJ𝑈 K)

mcgJ𝑥K = 𝑥
mcgJ𝜄K = 𝜄

mcgJ(𝝀 (x) C)K = (𝝀 (x) mcgJ𝐶K)

(b) From Monadic Form

Fig. 19. Code Generation

This monadic form compiler does not produce the same 𝐵-normal form that the 𝐵-reductions

produce. Instead, they’re equivalent up to Equation Associativity. However, they 𝐴𝐵-normalize to

equal terms.

5.3 Code Generation
We define two versions of code generation: one for ANF and one for monadic form. Performing

code generation from monadic form relies the ability to generate (set! x t), while the ANF code

generator should never generate this instruction. Otherwise, the output of the ANF compiler would

need to be 𝐴𝐵-normalized, defeating the purpose of 𝐴-normalizing in the first place.

The code generator for ANF is given in Figure 19a. Code generation from ANF is straightforward,

since all the complexity is in getting into ANF in the first place. We give the types of each translation

function, although they are imprecise. The function acgJ_K𝑁 does not return an arbitrary 𝑡 , but

only a value, call, or primitive operation, which are also valid in non-tail position. The definitions

could be collapsed, but since we must be careful to ensure well-formedness of set! to avoid extra

stack frames, we separate the traversal of different syntactic categories.

The code generator for monadic form is defined in Figure 19b. It is simpler than the ANF code

generator, since it can freely compose all 𝑡s in (set! x t).

5.4 𝐴𝐵-Normalizer
Finally, we define the 𝐴𝐵-normalizer Figure 20. The entire compiler is essentially searching for a

(set! x t) form, then performing the 𝐴𝐵-reductions, recursively. There is nothing complex in the

definition; all rules but the last two are just traversals. The compiler assumes all 𝝀s are bound to

variable with set!, which is necessary in the region calculi; this also simplifies the compilation of

operands.

The compilerAB-normal-compile = abnf·mcg·mf is simpler than theANF-compile = acg·anf
compiler. AB-normal-compile does not require CPS to implement, does not require implementing

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:22 William J. Bowman

abnfJ_K𝑡 : 𝑡 → 𝑡

abnfJ(begin #»𝑠 t)K𝑡 = (begin
»

abnfJ𝑠K𝑠 abnfJ𝑡K)
abnfJ(if0 v t1 t2)K𝑡 = (if0 v abnfJ𝑡1K𝑡 abnfJ𝑡2K𝑡)

abnfJ(op #»
v)K𝑡 = (op

#»
v)

abnfJ(call v1 v2)K𝑡 = (call v1 v2)
abnfJ_K : v → v

abnfJ𝑥Kv = 𝑥

abnfJ𝜄Kv = 𝜄

abnfJ(𝝀 (x) t)Kv = (𝝀 (x) abnfJ𝑡K𝑡)

abnfJ_K𝑠 : 𝑠 → 𝑠

abnfJ(begin #»𝑠)K𝑠 = (begin
»

abnfJ𝑠K𝑠)
abnfJ(set! x v)K𝑠 = (set! x abnfJvKv)

abnfJ(set! x (op #»
v))K𝑠 = (set! x (op #»

v))

abnfJ(set! x (call v1 v2))K𝑠 = (set! x (call v1 v2))
abnfJ(set! x (begin #»𝑠 t))K𝑠 = (begin abnf

»

J𝑠K𝑠 abnfJ(set! x t)K𝑠)
abnfJ(set! x (if0 v t1 t2))K𝑠 = (if0 v abnfJ(set! x t1)K𝑠 abnfJ(set! x t2)K𝑠)

Fig. 20. 𝐴𝐵-Normalization

(or managing the implementation of) join points, and it achieves the same or better performance

characteristics as ANF-compile, by Theorem 4.2.

6 Conclusions
6.1 What About CPS
We ignore CPS throughout this paper because, in our view, CPS solves a different problem than

ANF.

A-normalization, and our AB-normalization, solve the problem of local control: how to explicate

the data and control flow of subexpressions without control effects. But neither address the problem

of non-local control, such as returning from a function call (a control effect). The problems with

ANF begin when conflating these two, using a solution for non-local control (continuations) to

solve a local control problem (commuting conversions).

Non-local control is still important. In this paper, we never notice the non-local control problem

since we never compile call and return. To compile these, we need something like a join point

or a control operator–i.e., we need object-language continuations by any other name. Whatever

the technique, it should reify the continuation introduced by the non-tail call instruction, and

used by the return instruction, into data, which is stored in the heap, and optimized by some set

of equations. This would let us transform our CESK machine into a CES machine, which more

closely models a real machine, with a code pointer, a register file, and memory. For example, if we

add a let/cc instruction of the form (let/cc k t) to our ABNF, we can compile call and return as

something like the following.

mcgJ(call v1 v2)K𝐶 = (let/cc k (call mcgJv1K mcgJv2K k))

mcgJvK𝐶 = (call k mcgJvK𝑉)

That is, when we find a non-tail call (a call in 𝐶 position), we capture the current continuation

and generate a tail-call (since the body of let/cc accepts a tail) that explicitly passes the captured

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

A Low-Level Look at A-Normal Form 277:23

continuation as its return label. A value in𝐶 position is being returned, so we transform it into a tail-

call to the continuation. The let/cc operation can be compiled to a labelled instruction that pushes

and pops caller saved variables around the call, avoiding allocating continuations altogether
6
.

This calculus starts to look, morally, like Tolmach and Oliva [26]’s SIL or Cong et al. [4]’s IL.

Chez Scheme implements this transformation, suggesting it works well in practice; IL language L13

removes calls from non-tail positions, and replaces them with goto and a return−point construct
(whose semantics is similar to let/cc)7. We could probably perform a rational reconstruction of this

pattern from the machine semantics, as we did with ANF and monadic form.

6.2 Case-of-Case
The AB-normal compiler fails to optimize case-of-case commuting conversions. Consider the

example (if0 (if0 e 1 0) 5 6). From this, the ANF compiler generates (if0 e (if0 1 5 6) (if0 0 5 6)).

We can see the branches have been duplicated, which looks like a problem. However, now a

simple partial evaluator can optimize this to (if0 e 6 5). By contrast, the 𝐴𝐵-normal compiler

produces first (let (x (if0 e 1 0)) (if0 x 5 6)) then (begin (if0 e (set! x 1) (set! x 0)) (if0 x 5 6)). No

code is duplicated, but we cannot easily perform the same optimization. The join point calculus of

Maurer et al. [17] handles this example very well, although at the cost of introducing join points.

We believe this can be supported without join points by contextually separating values and

boolean position. For example, Danvy [5] present a standard monadic translation (such as we define

in Figure 18) extended with the following rules (more or less).

mfJ(if0 e e1 e2)K = (if J𝑒K𝑃 mfJ𝑒1K mfJ𝑒2K)
J_K𝑃 : 𝐶 → B

J(if0 e e1 e2)KB = (if J𝑒KB J𝑒1KB J𝑒2KB)
JvKB = (equal? mfJvK 0)

This compiles pattern matching to a sublanguage of boolean expressions. With this translation,

the example is transformed to (if (if (equal? e 0) (equal? 1 0) (equal? 0 0)) 5 6), which a simple

boolean optimizer could simplify as (if (if (equal? e 0) false true) 5 6), then (if (equal? e 0) 6 5).
It’s not clear that this completely solves the case-of-case problem that Maurer et al. [17] investi-

gate, but it solves their simple example, and does so without join points. Chez Scheme implements

this transformation, suggesting it works well in practice (Subsection 6.4).

6.3 AB Normalizing with Monadic Effects
We work in an imperative language, but that’s a choice based on our thinking in machines. AB-

normalization could be first performed in a high-level monadic language by transforming lexical

binding into a state monad to normalize commuting conversions. For example, perhaps an 𝐴-

normalizing monadic compiler would normalize with respect to the following rule.

𝐸 [(if v e1 e2)] −→𝐵 (do (if v (do (v1← e1) (set x v1))
(do (v2← e2) (set x v2)))

E[(get x)])

𝐵𝐴

We use the do notation to interact with the state monad in the target language. This lets us to

express an if statement in our high-level language. If do is compiled to begin, set to set!, and get
to variable reference, then this ends up in the same AB-normal form as our compiler.

6
For a description of this in Chez, see Flatt [10, Lines 447 and 484].

7
https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L1055

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L1055

277:24 William J. Bowman

Similarly, regions could first be elaborated into monadic regions [11, 12] rather than directly to

low-level machine instructions.

Of course, if we consider let to be the bind of partiality monad, for explicating local control,

and do to be the bind for the state monad, we may run into problems with composing these two

monads. The problem is made worse if we throw in a region monad. Perhaps we need a single

“compilation effects” monad if we wish to use a pure IR.

6.4 AB Normalization in Practice
The AB-reductions are the essence of a transformation found in several high-performance compilers

for function languages.

AB-normalization can be seen in Chez Scheme’s current implementation. Chez normalizes both

the let/let and let/if commuting conversions in one step in an imperative IR, as we formalize. The

can be seen, indirectly, in the difference between two of Chez’s language definitions: L10
8
and L7

9
.

(Lvalue (lvalue)

x (mref x x imm type))

(Rhs (rhs)

(+ lvalue literal (immediate imm) (label−ref l offset) (call) (alloc t))
(Expr (e)

(− (set! lvalue e) (let ([x e] ...) e)) ; (if e e e) is still in e

(+ rhs (set! lvalue rhs) (values t ...))
Listing 19. Excerpt of Chez’s L10 (Simplified)

A simplification of Chez’s L10 language is presented in Listing 19. The language is implemented

the Nanopass DSL [13], which enables defining a language in a BNF-like syntax with difference anno-

tations. The lvalue non-terminal defines two terminal productions, either x or (mref x x imm type).

The − meta-production removes productions from the non-terminal compared to the previous

language, while the + meta-production adds new productions to the non-terminal. We’ve elided

irrelevant productions and inlined some definition for clarity.

Listing 19 shows that let expressions are compiled into set!, and both 𝐴𝐵1 and 𝐴𝐵2 from Fig-

ure 11 are normalized. The expression syntax is almost entirely removed and replaced by three

productions: the primitives forms (rhs), return values (values t ...), and set! with a primitive right-

hand side; however, the (if e e e) syntax is not removed. Particularly the expressions (set! lvalue e)
and (let ([x e] ...) e) are replaced by only (set! lvalue rhs), where algebraic expressions e have been
unnested, as in our s non-terminal for AB-normal form Figure 9 (although Chez has more primitive

computations, including allocation, memory references, more base values, etc.). Since the right-hand

side of set! is also normalized, any if on the right-hand side of a let or set! must also be normalized

using the 𝐴𝐵1 equation of Figure 11.

A key difference in Chez compared to our pipeline is that Chez does not use monadic form

early in the pipeline. Chez still allows the expression (if (if e1 e2 e3) e4 e5) in L10, just not on the

right-hand side of a set!. Instead of using the monadic form normalization of if, Chez uses the
case-of-case transformation presented in Subsection 6.2, transforming boolean position into a

predicate sublanguage
10
. A simplification of Chez’s L11 is presented in Listing 20. In the process,

Chez also introduces the monadic form distinction we introduced earlier in the pipeline, resulting

in essentially AB-normal form.

8
https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L836

9
https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L561

10
https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L901

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L836
https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L561
https://github.com/cisco/ChezScheme/blob/9576b83dd757cf1494933c9fbc80cb6aff022295/s/np-languages.ss#L901

A Low-Level Look at A-Normal Form 277:25

(Expr (e)

(−)) ; entirely removed

(Tail (t)

(+ rhs (if p t t) (seq e t) (values t ...) (goto l)))

(Pred (p)

(true) (false) (if p p p) (seq e p))

(Effect (e)

(+ (set! lvalue rhs) (if p e e) (seq e e)))

Listing 20. Excerpt of Chez’s L11 (Simplified)

The Chez compiler is still widely used, renowned for its performance, and the Nanopass definition

makes comparison easy, but other high-performance compilers for functional languages have

adopted similar IRs.

The TIL compiler for ML [24] uses a monadic form IR called B-form. The authors claim it is

similar to A-normal form, but B-form does not normalize let/if commuting conversions. All switch

and case expressions branch on a value, as do most computations, but declarations including let
can bind switch and case expressions. The key syntax is essentially the following.

𝑒 ::= v | | (switch v (f ...) d) | (listcase v (nil : d) (cons : f))
𝑓 ::= (𝝀 (x ...) d)

𝑑 ::= v | (let (x e) d) |

Notably, let cannot be let-bound (so let/let commuting conversions are normalized), but switch
and listcase can appear let-bound (so let/if is not normalized). This form is preserved until code

generation. The translation into machine code informally describes the AB-reductions: “Translate

each arm [of the switch] so the the result of evaluating the arm is stored in 𝑟 , the result variable

for the switch. ... Note that it is easy to get the declaractions for the arms to store their results into

r. We simply pass 𝑟 to [the declaractions] when generating code for each arm.”. This mirrors our

𝐴𝐵1 from Figure 11, and abnf translation of (set! x (if0 v t1 t2)) from Figure 20.

Similarly, the ML to Ada compiler of Tolmach and Oliva [26] use an IR called SIL. The authors

describe SIL as “it permits the result of a case to be let-bound, unlike A-normal form, and even

permits the result of a let expression to be let-bound, unlike both A-normal form and TIL’s B-form”.

Their motivation is the same as our initial motivation for AB-normal form: to transform case

expressions without duplicating code or introducing continuation functions. SIL is essentially our

monadic form. SIL is later compiled into MIL, a sequential IR that has the same restrictions as our

AB-normal form, although MIL and the translation into MIL are only describe informally.

Our paper, in part, is an attempt to understand why and how these compilers avoids CPS and

ANF—the standard choices in published formal models—in favour of an apriori strange imperative

intermediate representation. The answer is that they choose ABNF before it had a name.

Acknowledgments
I’m gratefully for the feedback of the reviewers of this work, whose feedback significantly improved

this paper. I’m also personally grateful to the following people: Jonathan Brachthäuser, who asked

me an interesting question about ANF and regions; R. Kent Dybvig, who taught me a ton about

compilation and about some of the inner workings of Chez Scheme; Conor McBride, for advice

they may not know they gave me; Paulette Koronkevich, who advised me on one of the proofs.

We acknowledge the support of the Natural Sciences and Engineering Research Council of

Canada (NSERC), funding reference number RGPIN-2019-04207. Cette recherche a été financée

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

277:26 William J. Bowman

par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), numéro de

référence RGPIN-2019-04207.

This material is based upon work supported by the Defense Advanced Research Projects

Agency (DARPA) and Naval Information Warfare Center Pacific (NIWC Pacific) under Contract No.

NN66001-22-C-4027. Any opinions, findings and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily reflect the views of DARPA or NIWC

Pacific.

Data Availability Statement
The software artifact with mechanized models, containing the full definitions and implementations,

is publicly available [2].

References
[1] Nick Benton, Andrew Kennedy, and George Russell. 1998. Compiling Standard ML to Java Bytecodes. In International

Conference on Functional Programming (ICFP). https://doi.org/10.1145/289423.289435

[2] William Bowman. 2024. A low-level look at A-normal form (artifact). https://doi.org/10.5281/zenodo.13376916

[3] William J. Bowman. 2018. Compiling with Dependent Types. Ph. D. Dissertation. Northeastern University. https:

//doi.org/10.17760/D20316239

[4] Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. 2019. Compiling with continuations, or without?

whatever. PACMPL 3, ICFP (2019), 79:1–79:28. https://doi.org/10.1145/3341643

[5] Olivier Danvy. 2003. A New One-Pass Transformation into Monadic Normal Form. In International Conference on

Compiler Construction. https://doi.org/10.1007/3-540-36579-6_6

[6] Matthias Felleisen. 1987. The Calculi of Lambda-v-cs Conversion: A Syntactic Theory of Control and State in Imperative

Higher-order Programming Languages. Ph. D. Dissertation. https://www2.ccs.neu.edu/racket/pubs/dissertation-

felleisen.pdf

[7] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. MIT Press.

https://mitpress.mit.edu/9780262062756/

[8] Matthias Felleisen and Daniel P. Friedman. 1987. Control operators, the SECD-machine, and the 𝜆-calculus. In Formal

Description of Programming Concepts III, Martin Wirsing (Ed.). North-Holland, 193–222. https://legacy.cs.indiana.edu/

ftp/techreports/TR197.pdf

[9] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with

Continuations. In International Conference on Programming Language Design and Implementation (PLDI). https:

//doi.org/10.1145/155090.155113

[10] Matthew Flatt. 2020. Functions and Calls. In ChezScheme Implementation Overview. https://github.com/cisco/

ChezScheme/blob/1524f8065d8e731f6f8be2caaf36d296f4b91a32/IMPLEMENTATION.md?plain=1#L447 Accessed on

Aug. 20, 2024.

[11] Matthew Fluet and Greg Morrisett. 2006. Monadic regions. J. Funct. Program. 16, 4-5 (2006), 485–545. https:

//doi.org/10.1017/S095679680600596X

[12] Matthew Fluet, Greg Morrisett, and Amal J. Ahmed. 2006. Linear Regions Are All You Need. In European Symposium

on Programming (ESOP). https://doi.org/10.1007/11693024_2

[13] Andrew W. Keep and R. Kent Dybvig. 2013. A nanopass framework for commercial compiler development. In

International Conference on Functional Programming (ICFP). https://doi.org/10.1145/2500365.2500618

[14] Andrew Kennedy. 2007. Compiling with Continuations, Continued. In International Conference on Functional Program-

ming (ICFP). https://doi.org/10.1145/1291220.1291179

[15] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew Flatt, Jay A. McCarthy, Jon

Rafkind, Sam Tobin-Hochstadt, and Robert Bruce Findler. 2012. Run your research: on the effectiveness of lightweight

mechanization. In Symposium on Principles of Programming Languages (POPL). ACM. https://doi.org/10.1145/2103656.

2103691

[16] Paulette Koronkevich, Ramon Rakow, Amal Ahmed, and William J. Bowman. 2022. ANF Preserves Dependent Types up

to Extensional Equality. Journal of Functional Programming (JFP) 32 (2022). https://doi.org/10.1017/s0956796822000090

[17] Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. 2017. Compiling without Continuations. In

International Conference on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/3062341.

3062380

[18] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92. https://doi.org/10.1016/

0890-5401(91)90052-4

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

https://doi.org/10.1145/289423.289435
https://doi.org/10.5281/zenodo.13376916
https://doi.org/10.17760/D20316239
https://doi.org/10.17760/D20316239
https://doi.org/10.1145/3341643
https://doi.org/10.1007/3-540-36579-6_6
https://www2.ccs.neu.edu/racket/pubs/dissertation-felleisen.pdf
https://www2.ccs.neu.edu/racket/pubs/dissertation-felleisen.pdf
https://mitpress.mit.edu/9780262062756/
https://legacy.cs.indiana.edu/ftp/techreports/TR197.pdf
https://legacy.cs.indiana.edu/ftp/techreports/TR197.pdf
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://github.com/cisco/ChezScheme/blob/1524f8065d8e731f6f8be2caaf36d296f4b91a32/IMPLEMENTATION.md?plain=1#L447
https://github.com/cisco/ChezScheme/blob/1524f8065d8e731f6f8be2caaf36d296f4b91a32/IMPLEMENTATION.md?plain=1#L447
https://doi.org/10.1017/S095679680600596X
https://doi.org/10.1017/S095679680600596X
https://doi.org/10.1007/11693024_2
https://doi.org/10.1145/2500365.2500618
https://doi.org/10.1145/1291220.1291179
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1017/s0956796822000090
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4

A Low-Level Look at A-Normal Form 277:27

[19] Zoe Paraskevopoulou. 2020. Verified Optimizations for Functional Languages. Ph. D. Dissertation. Princeton University.

https://www.cs.princeton.edu/techreports/2020/006.pdf

[20] Zoe Paraskevopoulou and Anvay Grover. 2021. Compiling with continuations, correctly. Proc. ACM Program. Lang. 5,

OOPSLA (2021), 1–29. https://doi.org/10.1145/3485491

[21] Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel. 2021. Compositional optimizations for CertiCoq. Proc. ACM

Program. Lang. 5, ICFP (2021), 1–30. https://doi.org/10.1145/3473591

[22] Zhong Shao and AndrewW. Appel. 1994. Space-Efficient Closure Representations. In Conference on LISP and Functional

Programming (LFP). https://doi.org/10.1145/182409.156783

[23] Jeremy Siek. 2012. My new favorite abstract machine: ECD on ANF. http://siek.blogspot.com/2012/07/my-new-

favorite-abstract-machine-ecd-on.html Accessed on Aug. 20, 2024.

[24] David Tarditi. 1996. Design and implementation of code optimizations for a type-directed compiler for Standard ML. Ph. D.

Dissertation. Carnegie Mellon University. https://csd.cmu.edu/sites/default/files/phd-thesis/CMU-CS-97-108.pdf

[25] Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the typed call-by-value 𝜆-calculus using a stack of regions.

In Symposium on Principles of Programming Languages (POPL). https://doi.org/10.1145/174675.177855

[26] Andrew P. Tolmach and Dino Oliva. 1998. From ML to Ada: Strongly-Typed Language Interoperability via Source

Translation. J. Funct. Program. 8, 4 (1998), 367–412. https://doi.org/10.1017/S0956796898003086

Received 2024-04-02; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 277. Publication date: October 2024.

https://www.cs.princeton.edu/techreports/2020/006.pdf
https://doi.org/10.1145/3485491
https://doi.org/10.1145/3473591
https://doi.org/10.1145/182409.156783
http://siek.blogspot.com/2012/07/my-new-favorite-abstract-machine-ecd-on.html
http://siek.blogspot.com/2012/07/my-new-favorite-abstract-machine-ecd-on.html
https://csd.cmu.edu/sites/default/files/phd-thesis/CMU-CS-97-108.pdf
https://doi.org/10.1145/174675.177855
https://doi.org/10.1017/S0956796898003086

	Abstract
	1 Introduction
	2 A-Normal and Monadic Form, Formally
	2.1 A-Normal Form
	2.2 Monadic Form

	3 Machine Semantics of ANF
	3.1 ANF vs Lambda Machines
	3.2 A Region Calculus and Machine

	4 Imperative A-Normalization
	4.1 Machine Semantics of AB-Normal Form
	4.2 AB-Normalization and Regions

	5 An AB-Normal Compiler
	5.1 ANF Compiler
	5.2 Monadic Compiler
	5.3 Code Generation
	5.4 AB-Normalizer

	6 Conclusions
	6.1 What About CPS
	6.2 Case-of-Case
	6.3 AB Normalizing with Monadic Effects
	6.4 AB Normalization in Practice

	Acknowledgments
	References

